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ABSTRACT 

Deadbeat control was investigated extensively in the last couple of decades, but a need 

still exists to offer a better methodology for both performance and robustness for linear and 

nonlinear systems. This research proposes a new design methodology for ripple-free deadbeat 

control for nonlinear systems in discrete-time. The proposed method combines two ripple-free 

deadbeat control laws. The new controller guarantees robustness and handles multi-rate systems. 

Multi-rate digital control is used when processing time is greater than controller updating time; 

thus, processing time can be decreased by increasing at least one of the following: state feedback 

sampling time; output feedback-sampling time, input sampling time, and/or decreasing 

controller-updating rate for some processes; therefore, the sampling time is not unique for the 

whole system. The new controller is applied on magnetic ball levitation CE 152 as a case study 

for nonlinear systems.  

 

The deadbeat tracking formulation is based on a polynomial approach and a time domain 

approach; thus, the proposed method combines two deadbeat control laws. In this thesis, the time 

domain approach is used to ensure the local behavior of the nonlinear system, while the 

polynomial approach is used to provide deadbeat control to the linearized nonlinear system. 

Nonlinear system is linearized using feedback linearization, A second order linear model is used 

to approximate the nonlinear system based on two dominant poles; thus, the settling time which 

depend on the minimum order solution of Diophantine equations is minimized.  Xilinx 

MATLAB toolbox is used to implement the new controller on real-time magnetic ball levitation. 

Sub controller, which depends on polynomial approach, is written in VHDL code, simulated and 

compared with original and approximated SIMULINK model using Xilinx DSP toolbox. 

 

Simulation and real-time results shows that the output signal exactly tracks the input 

sinusoidal signal in short settling time. The time domain specification for the output signal, 

control signal, and error signal are computed and satisfied the requirement and constraints. A 

time delay is also presented and included in the model and the solution is based on  two 

Diophantine equations that form the ripple-free deadbeat.  
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  ملخص البحث

على الرغم من كل الجھود السابقة لتصميم نظام التحكم المرھق أو ما يمكن تسميته بنظام الضربة القاضية لأنظمة 
فلا زلنا بحاجة لتصميم أنظمة تحكم بطرق جديدة لضمان الأداء الأفضل والقوة   ،في العقدين الأخيرين خطية وغير خطية

يقوم  وھو. لبحث يقدم نظام تحكم جديد لأنظمة غير خطية لھا أكثر من معدل لأخذ العيناتھذا ا  .للأنظمة الخطية والغير خطية
بحيث لا توجد تسبة خطأ في تتبع الإشارة  وبثبات وقوة يقومان سويا بالتحكم بنظام غير خطي بسرعة فائقةبالدمج بين نظامين 

زمن معالجة  فة لأخذ العينات يستخدم لعدة أسباب منھا أنالمتحكم ذو المعدلات المختل .اھتزاز في تتبعھا ولا يوجد المرجعية
زمن أخذ عينات : يمكن تقليل زمن معالجة البيانات بزيادة واحد على الأقل من التالي ،لذلك البيانات أكبر من زمن أخذ العينات؛

 إشارةارة الراجعة من ؛ زمن أخذ عينات الإش) state feedback sampling time(الإشارة الراجعة من متغيرات الحالة 
أو زيادة /؛ و)input sampling time(؛ زمن أخذ عينات الإشارة الداخلة )output feedback-sampling time( الخرج

تم أخذ العينات من أكثر من مدخل وبمعدَّلات مختلفة لأخذ العينات فمعدل أخذ العينات   ،زمن معالجة البيانات؛ من أجل ذلك
حيث أنه يعتبر مثال للأجھزة  CE 152 على جھاز رفع الكرة مغناطيسيا  تم تطبيق المتحكم الجديد .ظامليس واحد في كل الن

  .الغير خطية
  

حداھما ھي طريقة المجال الزمني والأخرى باستخدام مجال إ ،المتحكم المرھق لأنظمة خطية  بطريقتين إيجاديتم 
يستھلك طاقة أقل ويحل المشكلة باستخدام معادلات فضاء الحالة  طريقة المجال الزمني تعتمد على الحل الذي. المعادلات

(state space)   .أما طريقة مجال المعادلات فإنھا تعتمد على حل معادلة الدايفنتين(Diophantine)   ويحل المشكلة باستخدام
في ھذه . رھق بطريقة المجال الزمنييجاد نظام التحكم المإالخطية يتم ير أما الأنظمة غ. (Transfer Function)معادلة النقل 

بالدمج بين طريقة المجال يجاد نظام التحكم المرھق لأنظمة تحكم غير خطية لھا معدَّلات مختلفة لأخذ العينات إ تمالدراسة 
 local(حيث أن طريقة المجال الزمني تستخدم لضمان الإستجابة الجزئية والمحلية  الزمني وطريقة مجال المعادلات

behavior (بينما طريقة مجال المعادلات تستخدم لضمان  ،لأنظمة غير خطية حيث يتحول النظام الغير خطي إلى نظام خطي
 نظمة خطية باستخدامأالأنظمة الغير خطية يتم تحويلھا إلى . الإستجابة التامة للنظام الغير خطي والذي تم تحويله لنظام خطي

النظام الغير خطي سيتم عمل تقريب ). feedback linearization(اشارة المخرج الطريقة التي تعتمد على متغيرات الحالة و
؛ حيث أن )two dominant poles(لادائه لتِظام خطي من الدرجة الثانية بالإعتماد على الجذرين الأكثر تأثيرا بسلوك النظام 

ى حل الدرجة الأصغر لمعادلة الدايوفانتين والتي تعتمد عل) settling time(زمن وصول استجابة النظام لحالة اللإستقرار 
استخدامھا لعمل محاكاة لنظام رفع الكرة  تم  MATLABالموجودة في برنامج   SIMULINKبيئة المحاكاة . سيصبح أصغر

لربط جھاز رفع الكرة مغناطيسيا وتطبيق نظام التحكم الجديد عليه  Xilinx MATLAB toolboxمغناطيسيا ثم استخدام 
ومن ثم عمل مقارنة    VHDLتحويله إلى لغة  تمالجزء الخاص بمجال المعادلات .  SIMULINKبه عن طريق بيئة والتحكم 

 .Xilinx DSP toolboxمع نظام المتحكم الحقيقي باستخدام   VHDLلكود 
  

. قصير جداالمحاكاة والتطبيق العملي للمتحكم الجديد أظھروا أن الإستجابة تتبع الإشارة المرجعية بدقة في زمن 
التأخير  .و إشارة الخطأ حققوا المطلوب والتزموا بالقيود ،و إشارة التحكم ،الإستجابة والخصائص الخاصة بإشارة الإستجابة

الزمني تم التعامل معه أيضا معتمدين على معادلتي الدايوفانتين لايجاد نظام التحكم المرھق الخالي من التموجات بمعدلات 
  .مختلفة لأخذ العينات
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CHAPTER 1 INTRODUCTION 

1.1. General Introduction 

Control systems have played an increasingly important role in the development 

and advancement of modern civilization and technology [1]. Practically some types of 

control systems affect every aspect of our day-to-day activities. Control systems are 

found in abundance in all sectors of industry, such as quality control of manufactured 

products, automatic assembly line, machine-tool control, computer control and many 

others [2]. Today, almost all controllers are computer implemented meaning digital 

control [3]. Deadbeat controller is a type of digital controllers, which offers the fastest 

settling time. Therefore, deadbeat controller ensures that the error sequence vanishes at 

the sampling instants after a finite time. Plants and processes are typically nonlinear; the 

most typical nonlinearity is saturation. Since, computer implemented controllers are a 

standard configuration, a theory for discrete-time nonlinear systems is very important in 

particular for control design purposes. Indeed, we cannot use linear control theory in 

cases where: large dynamic range of process variables is possible, multiple operating 

points are required, the process is operating close to its limits, small actuators cause 

saturation, etc [4]. A control system is a device or set of devices –called the controller- 

that manage the behavior of other devices – called the plant-.[5].  

1.2. Closed-loop control system:  

In a closed-loop control system, a sensor monitors the output and feeds the data 

to a computer, which continuously adjusts the control output (system input) as 

necessary to minimize the error as shown in Fig. (1.1). (That is, to maintain the desired 

speed, desired position, and so on). Feedback allows the controller to dynamically 

compensate the disturbances. An ideal feedback control system cancels out all errors, 

effectively mitigating the effects of any forces that might or might not arise during 

operation and producing a response in the system that perfectly matches the user's 

wishes. 

 

 

 

 

 

 

 

 

Figure (1.1): Closed loop control system 
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In reality, this cannot be achieved due to measurement of errors in the sensors, 

delays in the controller, and imperfections in the control input. The concept of the 

feedback loop: the sensed value is subtracted from the desired value to create the error 

signal, which is handled by the controller to produce the control signal, which can 

achieve the desired response [6]. 

 

1.3. Digital Controller: 

Digital control is a branch of control theory that uses digital computers to act as 

system controllers. Depending on the requirements, a digital control system can be a 

microcontroller, DSP kit, FPGA kit, standard desktop computer and so on. Since a 

digital computer is a discrete system, the Laplace transform is replaced with the Z-

transform. In addition, since a digital computer has finite precision, extra care is needed 

to ensure that the error in coefficients, A/D conversion, D/A conversion, etc. are not 

producing undesired or unplanned effects.  For any digital controller, the output is a 

weighted sum of current and past input samples, as well as past output samples, this can 

be implemented by storing relevant values in any digital controller [3]. 

 

 

1.3.1. Features of Digital Controllers 

 Inexpensive 

 Flexible: easy to configure and reconfigure through software  

 Scalable: programs can be scaled  to the limits of the storage space without  extra 

cost  

 Adaptable: parameters of the program can be changed 

 Static operation: digital computers are much less prone to environmental 

conditions than capacitors, inductors, etc[7].  

 

1.3.2. Digital controller requires: 

 A/D converter: converts analog inputs to machine readable format (digital) 

 D/A converter: converts digital output to a form that can be input to a plant  

 Software program: that relates the outputs to the inputs [3] 

 

 

 

http://en.wikipedia.org/wiki/Digital
http://en.wikipedia.org/wiki/Discrete_mathematics
http://en.wikipedia.org/wiki/Analog_to_digital_converter
http://en.wikipedia.org/wiki/Digital_to_analog_converter
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1.4. Previous Studies: 

Multi-rate ripple-free deadbeat controller for nonlinear system can‟t see the light 

without the following researches: 

 

 H. Elaydi and R. A. PAZ, (1998), proposed optimal ripple-free deadbeat 

controllers for systems with time delays. Matrix parameterization of the 

Diophantine equation approach was used to solve this problem. Based on this 

parameterization, LMI conditions were provided for optimal or constrained 

controllers with design quantities such as overshoot, undershoot, control 

amplitude, “slew rate” as well as for norm bounds such as 1 2
, and


   [8]. 

However, they treated linear systems only 

 

 Dragan Neˇsi´c (1996), proposed ripple-free deadbeat control for polynomial 

systems of nonlinear input-output polynomial model. The proposed method 

dealt with multi-input multi-output systems. Mathematical tools, such as 

algebraic geometry, real algebraic geometry, symbolic computation and convex 

analysis were exploited. A number of analytic results were obtained utilizing 

computationally feasible controllability tests and design methodologies [4]. 

However, he didn‟t treat multi-rate problems and didn‟t use general rule such as 

Diophantine equations. 

 
 

 L. Jetto and S. Longhi, (1999), proposed parameterized solution of the deadbeat 

ripple-free control problem for multi-rate sampled data systems. This paper was 

provided a parameterization of all causal feedback periodic controllers which 

guaranteed the deadbeat ripple-free behavior of the output of a linear time-

invariant plant with a general multi-rate control scheme [9]. However, they 

treated multi-rate problems for linear systems only. 

 

  H. Ito, (2001), improved performance of deadbeat servomechanism by means of 

multi-rate input control. A state-space approach to deadbeat servomechanism 

design was proposed using multi-rate input control. Multi-rate input mechanism 

yielded shorter settling time than single-rate control using the same frequency of 

sampling. However, multi-rate control often exhibited inter-sample ripple. 

Furthermore, the paper proposed a design method for multi-rate ripple-free 

deadbeat control which guaranteed robustness against continuous-time model 

uncertainty and disturbance [10]. However, the paper still didn‟t deal with 

nonlinear systems. 
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 R. A. PAZ, (2006), proposed a ripple free tracking with robustness. A hybrid 

two-degree-of freedom (2DOF) controller for the fixed-order constrained 

optimization problem addressing performance and robustness specifications was 

shown. The controller was given in terms of the solution of two Diophantine 

equations [11]. However, the nonlinear plants were not delt with. 

 

 M. E. Salgado and D. A. Oyarzun, (2007), presented two objective optimal 

multivariable ripple free deadbeat controls. A simple parameterization of all 

stabilizing ripple-free deadbeat controller of a given order was given. The free 

parameter was then optimized in the sense that a quadratic index was kept 

minimal [12].However, the nonlinear and multi-rate were not approached. 

 

 Al Batsh  (2009), proposed multi-rate ripple-free deadbeat control. Two degree 

of freedom controller for the fixed-order constrained optimization problem 

addressing performance specifications utilizing the parameters of Diophantine 

equation to build a multi-rate ripple-free deadbeat control was presented. A 

combination between the concept of multi-rate and robust single rate was 

utilized. A time delay was also presented in simulation and was solved by using 

deadbeat controller based on solving Diophantine equation parameters [13]. 

However, he didn‟t treat nonlinear on multi-rate systems. 

1.5. Thesis Contribution:  

This thesis presents methodologies for designing internally stabilizing ripple-free 

deadbeat controllers to solve the tracking of an arbitrary reference signal and the 

attenuation of general disturbances for nonlinear systems. The deadbeat tracking 

formulation is based on Paz‟s results [11] and H. Ito‟s result [10], thus; the proposed 

controller combines two deadbeat controllers for linear systems to deadbeat nonlinear 

systems; thus, the new controller can be divided into two sub controllers: one of them 

will use polynomial approach and the other will use time domain approach.  

1.6. Outline of the Thesis 

This thesis is organized as follow: The second chapter introduces the forthcoming 

chapters and summarizes them, the third chapter presents the magnetic ball levitation 

CE152, the fourth chapter presents the feedback linearization of magnetic ball levitation 

CE152, the fifth chapter shows the methodology and approach, the sixth chapter shows 

simulations and results, and the final chapter concludes this thesis. 
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CHAPTER 2 BACKGROUND 

This chapter gives background for the forthcoming chapters. Previous studies 

which mentioned in page 3 treated single-rate ripple-free deadbeat controller for linear 

systems, single rate ripple-free deadbeat controller for nonlinear systems without using 

general rule by dealing with polynomial systems of each nonlinear plant, and multi-rate 

ripple-free deadbeat controller for linear systems. Therefore, the previous studies did 

not deal with multi rate ripple-free deadbeat controller for nonlinear system; thus, I will 

start my work with Paz‟s result and apply Diophantine equations to the linearized plant 

using feedback linearization. Therefore, this chapter will cover briefly the multi-rate 

digital control, deadbeat controller for linear systems, nonlinear systems, feedback 

linearization, designing steps to deadbeat magnetic ball levitation CE152, and the 

necessary assumptions. 

2.1. Multi-rate digital control 

Multi-rate digital control systems are those, which use more than one sampling rate as 

shown in Fig.(2.1). If the controller updating rate fc=1/Tc is the same as the state 

feedback sampling rate 1/T2, output feedback sampling rate 1/T3, and input sampling 

rate 1/T1, then it‟s a single-rate system. 

 

Figure (2.1): Multi-rate control system 

2.2. Reasons for using multi-rate digital control 

There are many practical reasons why multi-rate digital control systems might be used. 

For example: 

 Required sampling rate is greater than the frequency of sampler; 

therefore; multi-rate technique can be used to map each input sample to 

K samples (i.e. increase the controller updating rate) 
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 Processing time is greater than controller updating time, therefore; we 

should decrease number of processes by increasing at least one of the 

following: state feedback sampling time; output feedback-sampling time, 

input sampling time, and/or decreasing controller-updating rate for some 

processes. 

2.3. Multi-rate ripple-free deadbeat control for nonlinear systems 

This approach here combines results developed on multi-rate ripple-free deadbeat 

[10], robust ripple-free control [11], and nonlinear control theory [19]. 

 

2.3.1. Multi-rate input controller for linear system (Hiroshi approach):  

Deadbeat control can be achieved using state and output feedback with integral 

control. The two mappings ζ and ξ shown in Fig.(2.2) are linear operators maps each 

input sample to K samples; thus, the sampling rate will increase to N*K samples/sec 

instead of  N samples/sec. 

 

This structure will yield shorter settling time than single rate with sampling rate 

equal k samples/sec, but longer settling time than single rate with sampling rate equal 

N*K samples/ sec. 

 

Ripples will appear between original samples due to mapped samples which do 

not match the original signal [11]. 

 

Therefore, this technique is good when you need sampling rate greater than the 

frequency of sampler since multi-rate controllers can achieve the required settling time 

with less frequent sampling of measurement.  

 

Figure (2.2): Multi-rate control for deadbeat servomechanism 
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2.3.2. Ripple-free deadbeat controller (R. PAZ approach) 

A deadbeat controller design based on the internal model principle and ripple-

free deadbeat design was presented by Paz; this technique gave a very good 

performance and robustness with very small settling time, but with a very high 

control signal. 

 

Since, evaluating the three polynomials N1, N2, and Dc shown in Fig.(2.3) 

depend on the numerator and denominator of plant as well as denominator of 

reference signal, it can‟t be applied for nonlinear systems. 
  

 

Figure (2.3): Ripple-free deadbeat design based on internal model 

 

2.3.3. State and output feedbacks: 

The basic philosophy of feedback linearization is to cancel the nonlinear terms 

of the system. Therefore, state and output feedbacks don‟t achieve deadbeat control 

the nonlinear system it can just linearize the nonlinear system and the state feedback 

control solves the local tracking problem [19]. 

 

Therefore, state and output feedbacks can be used to linearize and stabilize the 

nonlinear system and to make the response of the system closely equal the reference 

signal.  
 

 

 

Figure (2.4): Integral control 
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2.3.4. Main objective 

From all previous techniques, the ripple-free deadbeat controller for nonlinear system 

shown in Fig.(2.5) consist of the following: 

 

 State and output feedbacks with integral controller will be used to linearize and 

stabilize nonlinear system with large sampling rate to make the response of 

nonlinear system closely equal the reference signal (Time-domain approach). 

 Ripple-free deadbeat design based on the internal model principle will be 

utilized and applied to the linearized and stabilized nonlinear system with small 

sampling rate to make the response of the system exactly equal the reference 

signal and provide some robustness(Polynomial approach). 

 
 

Figure (2.5): Multi-rate ripple-free deadbeat controller for nonlinear systems 

Fig.(2.5) shows the multi-rate digital control for nonlinear system since the state 

feedback and output feedback have sampling rate 1/T samples/sec, while reference 

signal has sampling rate 1/(T*K) samples/sec  and the controller updating rate of 

N1,N2,Dc is not the same as  the controller updating rate of integrator and feedback 

gains. 

2.4. Deadbeat controller for linear systems (Polynomial approach)  

 A linear system is a mathematical model of a system based on the use of a linear 

operator. Linear systems typically exhibit features and properties that are much simpler 

than nonlinear systems [14].  

 

 When we want to control the linear system, in general we use the Laplace 

transform (Z-Transform for digital systems) to represent the system, and when we want 

to examine the frequency characteristics of a system, we use the Fourier Transform. It is 

easy to evaluate the Laplace transform of first order differential equation, but it is 

difficult when the system has multiple first-order differential equations, so state-space 

approach has become popular [15].  

 

 In control engineering, a state space representation is a mathematical model of a 

physical system as a set of input, output and state variables related by first-order 

differential equations as shown in Fig. (2.6). The state space representation (also known 

as the "time-domain approach") provides a convenient and compact way to model and 

analyze systems with multiple inputs and outputs [16].  
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The most general state-space representation of a linear system is written in the 

following form: 

 

( ) ( ) ( ) ( ) ( )
--------------------------------------------------------------------(2.1)

( ) ( ) ( ) ( ) ( )
x t A t x t B t u t
y t C t x t D t u t

  
   



 
 

 

Figure (2.6): Block diagram representation of the state space equations 

 

Were A(t), B(t), C(t) and D(t) are a function of time, In most models A,B,C and D are 

time invariant giving rise to the model 

 

( )  ( )  ( )
----------------------------------------------------------------------------(2.2)

( )  ( )  ( )
x t A x t B u t
y t C x t D u t

  
   


 

  

This system can be converted to transfer function in the s-domain using Laplace 

transform. A discrete model can be obtained using the z-transform or modified z-

transform for delayed systems.  According to Paz [11] the deadbeat controller 

polynomials are obtained by solutions of two Diophantine equations: 

 

 

 

 Since the Diophantine equation has an infinite number of solutions, we 

will seek specific solutions that provide desired transient behavior and robustness. In 

general, Diophantine equations have unique, minimum-order solutions, so there exist 

unique 1min 1min 2min min( ),  ( ),  ( ),   ( )cN q Q q N q and D q where:  

 

   
   
 

1min r

1min p

2min

 Degree N  Degree D ------------------------------------------------------------------(2.5)

Degree Q  Degree N -----------------------------------------------------------------(2.6)

Degree N





  
   

p

cmin p

 degree D ------------------------------------------------------------------(2.7)

Degree D  degree N ------------------------------------------------------------------(2.8)
 

These solutions will be applied to the plant as shown in Fig. (2.7), 

1 1

2

( ) ( ) ( ) ( ) 1-------------------------------------------------------------------(2.3)
( ) ( ) ( ) ( ) 1------------------------------------------------------------------(2.4)

P r

P p c

N q N q D q Q q
N q N q D q D q

 
 
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Figure (2.7): Implementation of the RFDC for linear systems. 

When the control magnitude is constraint, Paz proposed a solution to minimize 

the magnitude of control signal according to the length of V1 where V1 is vector with 

unknown coefficients, Paz evaluates V1 using the MATLAB built-in function “qp” 

which is a part of the optimization toolbox. Where:  

 

 
New  N1 will be applied to the system as shown in Fig. (2.8) 

 

 

 

Figure (2.8): RFDBC for linear systems with constraint on control magnitude. 

Two steps will be used to evaluate V1, where the step response of system will be 

better, the new vector for the same settling time; will decrease the control magnitude, 

overshoot, and error signal. 

2.5. Nonlinear systems 

In mathematics, a nonlinear system is a system which does not satisfy the 

superposition principle, or whose output is not directly proportional to its input. Less 

technically, a nonlinear system is any problem where the variable(s) to be solved cannot 

be written as a linear combination of independent components such as  squared terms in 

the following relation [17]. 

The motion equation of the ball of magnetic ball levitation CE152 is typically 

nonlinear that can be modeled such as: 

 

Where „i‟ is the coil current, „kc‟ is coil constant, and „x0‟ is position offset.  

1 1min 1( ) ( ) ( ) ( )-------------------------------------------------------------------(2.9)rN q N q D q V q 

 

2

c
k k2

0

i k
m x= -m g---------------------------------------------------------------------------------(2.10)

x-x




www.manaraa.com

 11 

Taylor series expansion will be used to linearize the nonlinear term in equation 

(2.10) by using the first two terms (constant and linear terms) of Taylor series then 

feedback linearization will be applied. 

2.6. Feedback linearization 

Feedback linearization shown in Fig.(2.9) is a popular approach to linearize 

nonlinear systems. Therefore, linear control techniques can be applied. Feedback 

linearization will be used because of the following reasons: 

By using feedback linearization, the dynamic behavior of the system can be 

shaped (i.e. it is possible to assign the system eigenvalues to arbitrary values). System 

should be observable and controllable to get a feedback from states and to derive the 

state vector to final state. 

 

Feedback linearization completely different from conventional linearization, 

because feedback linearization is achieved by exact state transformation and feedback, 

rather than by linear approximations of the dynamics.[18]. 

 

Figure (2.9): Block diagram representation of system with feedback linearization 

A feedback path from the output will be added to form the error, e, which will be fed 

forward to the controlled plant via an integrator as shown in Fig. (2.10). The integrator 

increases the system type and reduces the error (the previous system with feedback 

linearization will be dealt as an open loop system). 

 

Figure (2.10): Plant with state and output feedback with integral control 
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Feedback linearization with integral controller [19] will be programmed using 

digital computer with sampling time = T1 as shown in Fig. (2.11). 

 

 

Figure (2.11): Feedback linearization for nonlinear system with sampling time = T1 

2.7. Second order approximation 

Second order approximation for linearized model will be evaluated using two 

parameters –rising time „tr‟ (or settling time „ts‟) and overshoot- from step response in 

order to evaluate the deadbeat controller for linearized model with another sampling 

rate. The second order approximation will have the following form [6]: 

2

2 2
------------------------------------------------------------------------------------(2.11)

2

n

n ns s



  

 

Where, 
: Damping ratio  and : natural frequency n 

 

 

 

Figure (2.12): Second order approximation of maglev with feedback linearization 
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Tuning the parameters of second order system as shown in Fig. (2.12) until the two 

outputs Y1 and Y2 are the same. Then,
_ and  will be  and  respectivelyn n new new    , 

and the output of approximated model will be equal to the output of linearized model as 

shown in Fig. (2.13). 

_ ------------------------------------------------------------------------------------(2.15)

       ----------------------------------------------------------------------------------
n new n

new





  
  

 

  -(2.16)

 

Where, 
   are small numbers.and  

    

The second order approximation will be as follow: 

22
_

2 2 2 2

_ _

( )

2( )( ) ( ) 2

n newn

n n new n new n news s s s



  

 

        




      
 

 

 

Figure (2.13): Exact second order approximation of maglev CE152 with FBL 

 

Nonlinear plant has already linearized with feedback linearization using 

sampling time T1 sec.; thus, the three blocks N1, N2, and Dc will be obtained  with 

another sampling time T2 sec. after evaluated the second order approximation to the 

linearized plant as shown in Fig.(2.14) 

 

 

Figure (2.14): Deadbeat controller for approximated model 
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Deadbeat controller will be applied on real time magnetic ball levitation and N1, 

N2, and Dc will be tuned until reach the required response as shown in Fig.(2.15). 

 

Figure (2.15):  Deadbeat controller for nonlinear system 

 

Finally, VHDL code for Deadbeat controller will be written and simulated using 

Xilinx DSP toolbox, in this toolbox you could define which FPGA kit will be used and 

many other properties. 

 

 

 

Figure (2.16):  VHDL code vs. SIMULINK block diagram 
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2.8. Designing steps to deadbeat magnetic ball levitation 

Magnetic ball levitation CE152 will be used as a case study for nonlinear system 

by the following steps 

 Deriving the input/output relation of maglev sub-models (D/A converter, 

Power amplifier, ball & coil subsystem, Position sensor, A/D converter). 

 Evaluating state space of magnetic ball levitation after linearization around 

midpoint. 

 Applying Controllability and Observability tests to check if the following 

steps can be done. 

 Evaluating feedback linearization with sampling time T1 using MATLAB 

built-in function „place‟, and applying it to magnetic ball levitation CE 152. 

 Evaluating second order approximation to the step response of maglev with 

feedback linearization.  

 Evaluating deadbeat controller for approximated model. 

 Applying deadbeat controller on real time magnetic ball levitation CE152. 

 Simulating VHDL code of deadbeat control for real time magnetic ball 

levitation using XILINX DSP toolbox and comparing it with the response of 

deadbeat block diagram. 

2.9. Constraints 

The following assumptions are necessary [11]. 

 

 1: nonlinear system is controllable and observable 

Possibility of forcing the system into a particular state by using an appropriate 

control signal is required; thus, system should be controllable. 

Possibility of reading all state variables is required in order to apply feedback 

linearization; thus, system should be observable. 

 2: denominator of reference signal and numerator of plant are coprime in 

discrete-time. 

Possibility of tracking reference signal requires no common factor between 

denominator of reference signal and numerator of plant to ensure that, there is no 

poles zeros cancellation; thus, denominator of reference signal and numerator of 

plant should be coprime. 

 3: there is no sinusoidal term in the reference signal with frequency that 

coincides with an integer multiple of the Nyquist frequency. 

 Possibility of reconstruct the original continuous signal is required to compare 

between sensed and reference signals; thus, reference signal must not have 

frequency that coincides with an integer multiple of the Nyquist frequency. 
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CHAPTER 3 MAGNETIC BALL LEVITATION CE 152 

Levitation (from Latin levitas "lightness") is the process by which an object is 

suspended by a physical force against gravity, in a stable position without solid physical 

contact. A number of different techniques have been developed to levitate matter, 

including the aerodynamic, magnetic, acoustic, electromagnetic, electrostatic, gas film, 

and optical levitation methods [20]. Magnetic levitation systems have many varied uses 

such as in frictionless bearings, high-speed maglev passenger trains, levitation of wind 

tunnel models, vibration isolation of sensitive machinery, levitation of molten metal in 

induction furnaces and levitation of metal slabs during manufacturing. These systems 

have nonlinear dynamics that are usually open loop unstable and, as a result, a high 

performance feedback controller is required to control the position of the levitated 

object.  Due to inherent nonlinearities associated with electromechanical dynamics, the 

control problem is usually quite challenging to the control engineers, since a linear 

controller is valid only about a small region around a nominal operating point [21]. This 

chapter will talk about magnetic ball levitation CE152 as one of Magnetic levitation 

systems. 

3.1. Introduction to magnetic ball levitation CE152 

The Magnetic Levitation Apparatus shows control problems with nonlinear, 

unstable systems. The apparatus consists of a steel ball held in a magnetic field 

produced by a current-carrying coil. At equilibrium, the downward force on the ball due 

to gravity (its weight) is balanced by the upward magnetic force of attraction of the ball 

towards the coil. Any imbalance, the ball will move away from the set-point position. 

The basic control task is to control the vertical position of the freely levitating ball in 

the magnetic field of the coil. The Magnetic Levitation Apparatus is a nonlinear, 

dynamic system with one input (set point) and two outputs (ball position and coil 

current)[22]. 

The CE 152 Magnetic Levitation Model, shown in Fig(3.1) and its Diagram, 

shown in Fig.(3.2)  is an unstable system designed for studying system dynamics and 

experimenting with number of different control algorithms[23]. 
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Figure (3.1): CE152 magnetic ball levitation. 

 

   

 

Figure (3.2): Principal scheme of the magnetic levitation model. 

3.2. Model analysis 

The CE152 model, shown in Fig. (3.2) consists of the following sub models [24]: 

 D/A converter. 

 Power amplifier. 

 Ball & coil subsystem. 

 Position sensor. 

 A/D converter. 
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3.2.1. D/A converter 

D/A Converter, shown in Fig.(3.3) has model output voltage „u‟, The D/A 

converter input „UMU‟, The Digital to Analog converter gain „KDA‟, and The D/A 

converter offset U0. The output is defined in eq.(3.1) 

MU DA 0U U *K U  -------------------------------------------------------------------------------(3.1) 
 

 

 

Figure (3.3): D/A Converter. 

 

3.2.2. Power amplifier: 

The power amplifier is designed as a source of constant current with the feedback 

current stabilization. As shown in Fig(3.4). Relation between input current to and output 

voltage from power amplifier will be found: 

     

 
(a) Power amplifier                                               (b) Internal structure 

Figure (3.4): The power amplifier and its internal structure. 

 

  
m s

m am s

From internal structure 
di

u =iR+L +R i ----------------------------------------------------------------------------------(3.2)
dt

u =K u-K iR -------------------------------------------------------------------------------(3.3)

 



www.manaraa.com

 19 

  s am s s s am am s s

am

s am s s

am
s am s s

From (3.2) and (3.3)
di

iR+L +R i=K u-K iR   IR+LIS+R I=K U-K K R I
dt

KI 1

R +K K RLU R
S+1+

R R

KI 1
if R R -K K R  such as this system = -------------------------(3.4)

LU R
S+1

R
sim

 

 
 

   
 
 

 
 

  
 
 



i

a

i a

plify the previous relation 
I 1

=K ----------------------------------------------------------------------------------------(3.5)
U T s+1
where K  is Gain , T  is time constant

 

 
Equation (3.5) will be used in the next chapter to derive the state space of 

linearized model of magnetic ball levitation CE 152 

 

3.2.3. Ball and coil subsystem: 

 

Figure (3.5): Free diagram of the ball and the forces. 

The motion equation is based on the balance of all forces acting on the Ball. We 

have three forces: gravity force Fg, electromagnetic force Fm and the acceleration force 

Fa. , as shown in Fig (3.5), equation of free body diagram will be derived where „I‟ is the 

coil current, kc is coil constant, x0 is position offset, and Kfv is damping constant. 

According to Newton‟s second law of motion, the acceleration of an object as produced 

by a net force is directly proportional to the magnitude of the net force, in the same 

direction as the net force, and inversely proportional to the mass of the object [25]. 
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 

a m g

2

c
m 2

0

The net force
F =F -F   ----------------------------------------------------------------------------------------------(3.6)

Where;

Magnetic force 

i k
F =   -------------------------------------------

x-x

g k

-----------------------------------------------(3.7)

Gravitational force

F =m g     ----------------------------------------------------------------------------------------------(3.8)

Accelaration force

F

 

a k

2

c
k k2

0

=m x     ----------------------------------------------------------------------------------------------(3.9)

Substituting  (3.7),(3.8), and (3.9) into (3.6)

i k
m x= -m g   --------------------

x-x



 -----------------------------------------------------------(3.10)

 

Limits of the ball movements and ball damping is taken into account. So, to model the 

damping, the term kfv is introduced into the equation 

 

2

c
k k2

0

i k
m x+k x= -m g   -----------------------------------------------------------------------(3.11)

x-x
fv

 

 

Equation (3.11) will be used in the next chapter to derive the state space of linearized 

model of magnetic ball levitation CE 152 

 

 

3.2.4. Position sensor. 

The position sensor, shown in Fig.(3.6) which used to measure the ball position has 

model output voltage „Y‟, The Ball position „x‟, The position sensor gain „Kx‟, and The 

position sensor offsetY0.The output is defined in eq.(3.12)  

 

 

 

 

 

 

 

 

Figure (3.6): Position sensor subsystem. 

 

0Y=k Y -----------------------------------------------------------------------------------------(3.12)x x 
 

 

 

 

Kx x Y 

Y0 
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3.2.5. A/D converter. 

The A/D Converter, shown if Fig.(3.7) has model output voltage „YMU‟, The A/D 

converter input „Y‟, The analog to digital converter gain „KAD‟, and The A/D converter 

offset „YMU0‟. 

The output is defined in eq.(3.13) 

MU AD MU0Y =K Y+Y ----------------------------------------------------------------------------------(3.13)

 

 

 

  

 

 

 

 

 

Figure (3.7): D/A converter 

 

3.2.6. Magnetic constant “kc ” 

2

2

1
Coil energy W ---------------------------------------------------------------------------(3.14)

2

Inductance L= ----------------------------------------------------------------------------------(

m Li

N

R



2 2

3.15)

Resistance R= ----------------------------------------------------------------------------------(3.16)

substituting (3.16) into (3.15)

  L= ----------------------------------------------

l

A

N AN

R l




 

2 2 2
2

2 2

m

2

---------------------------------(3.17)

substituting (3.17) into (3.14)

1
W ( ) -----------------------------------------------------------------(3.18)

2 2*

dW
 F = ----------

dl 2

m

m

AN AN i
i

l l

AN i
Force

l

 



 

 

2

2

2

---------------------------------------------------------(3.19)

F --------------------------------------------------------------------------------------------(3.20)

 (3.19) and (3.20)

c
m

c

k i

l

from

AN
k





 
2

 

KAD 

YMU Y 

YMU0 
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3.3. Complete modeling: 

The final block diagram of the magnetic levitation model CE 152 is given in 

SIMULINK model as shown in Fig.(3.8): 

 

 
 

Figure (3.8): The complete model of magnetic levitation CE152 

 

 

 

 

 

 

 

 

Out voltage
1

velocity

1/s

variable gap

k_c / (u - x_0) 2̂

position

1/s

Power amplifier
and coil

k_i

Ta.s+1

Position sensor
gain and offset

k_x * u

Motion
force

Gravity
force

mk*g

Fc

DA converter 
saturation

D/A converter
gain and offset

k_DA * u

Ball damping

KFv

A/D convertor
gain and offset

k_AD * u

1/m

1/mk

In Voltage

1
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CHAPTER 4 FEEDBACK LINEARIZATNION 

 

Linearization refers to finding the linear approximation to a function at a given point. In 

the study of dynamical systems, linearization is a method for assessing the local 

stability of an equilibrium point of a system of nonlinear differential equations or 

discrete dynamical systems. This method is used in fields such as engineering. 

Linearization makes it possible to use tools for studying linear systems to analyze 

the behavior of a nonlinear function near a given point [26].  

4.1. Nonlinear systems 

Nonlinear system representation means the characterization of nonlinear systems 

using nonlinear mathematical models. In fact, nonlinear models may be considered as a 

tool for explaining the nonlinear behavior patterns in terms of a set of easily understood 

elements [19].  
 

In nature, most practical systems used for control are essentially nonlinear, and 

in many applications, particular in the area of chaos, it is the nonlinear rather than the 

linear characteristics that are most used. Signals found in the physical world are also far 

from conforming to linear models. Indeed, the complex structure of dynamic systems 

makes it almost impossible to use linear models to represent them accurately [27].  

 

Nonlinear models are designed to provide a better mathematical way to 

characterize the inherent nonlinearity in real dynamic systems, although we may not be 

able to consider all their physical properties. 

 

The linearization of a function is the first and second order terms of its Taylor 

series expansion around the point of interest. 

4.2. Taylor series. 

In mathematics, the Taylor series is a representation of a function as an infinite sum of 

terms calculated from the values of its derivatives at a single point. If the series is 

centered at zero, the series is also called a Maclaurin series(special case of Taylor's 

series). It is common practice to use a finite number of terms of the series to 

approximate a function.  



www.manaraa.com

 

24 

 

The Taylor series of a real or complex function ƒ(x) that is infinitely differentiable in a 

neighborhood of a real or complex number a is the power series.  

(3)
2 3

( )

0

( ) ( ) ( )
( ) ( ) ( ) ( )

1! 2! 3!
( )

( ) .
!

n
n

n

f a f a f a
f a x a x a x a

f a
x a

n





       

 

 

  

If the system has two variables, Taylor  series can be written as : 

  
 

 
  

 
 

  
 

 
  
 

 

(n) (n)

n n

(n) (n)
n=0

f a,b f a,b
f(x,y)=f(a,b)+ x-a + y-b +----

a *1! b *1!

f a,b f a,b
= x-a + y-b

a *n! b *n!



  
 
   

  
 
  
 


 

( )

0

(3)
2 3

1

If you don't have a calculator and you want to approximate f(x)= 4.001

let us use a=4

(4)
 f(x) (4.001 4) .

!

(4) (4) (4)
(4) (4.001 4) (4.001 4) (4.001 4)

1! 2! 3!
1

4

2*(4)

n
n

n

example

f

n

f f f
f





   

            

 


 

2 3

3 5

2 2 2

3 6 9

3 6 9

1 3
(0.001) (0.001) (0.001)

*1! 4*(4) *2! 8*(4) *3!

1 1 3
2 (1*10 ) (1*10 ) (1*10 )

2*2*1 4*8*2 8*32*6
(1*10 ) (1*10 ) (1*10 )

2
4 64 512

If I use just first two terms, the result 

  

  


     


            


           

will be  f(x)=2+0.00025 =2.0002500000

and If I use a calculator, the result wil be       f(x)= 4.001       =2.0002499844

The two results are approximately the same,  

result of approximation will be better if I use extra terms.  

In Figure (4.1) The exponential function (in blue), and the sum of the first n+1 

terms of its Taylor series at 0 (in red) 

 

Figure (4.1): Taylor series expantion. 
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4.3. State space of magnetic ball levitation CE 152 

The magnetic ball levitation CE152, shown in Fig.(3.1) and Fig.(3.2) is 

characterized by third order differential equation  as shown in equation (3.11) 

 

2

c
k k2

0

i k
m x= -m g-k x 

x-x
fv

 

 
 

In order to obtain a state variable model, 

1

2 1

let x = x           ---------------------------------------------------------------------------------------(4.1)
     x x x  ------------------------------------------------------------------------  

3

---------------(4.2) 
     x =i            ---------------------------------------------------------------------------------------(4.3)

 

Substituting (4.1),(4.2), and (4.3) into equation (3.11) 

 

2

c
2 k 2 2 k2

1 0

i k
 x m x +k x = -m g  ------------------------------------------------(4.4)

x -x
fvx

 
   

 
 

  

 

 

 

 

1 2

2

c 2
2 2

kk 1 0

3

i

x x

i k k x
x = -g- ----------------------------------------------------------------------(4.5)

mm x -x

x =I

From equation (3.5) T 1 I K U

Where i(t) can be defined such as:

T ( )

fv

a

a

s

i t i

 
 
 
 
 
  

  










i
i

K u(t) ( )
( ) K u(t) ( ) --------------------------------------------------(4.6)

Ta

i t
t i t


  



 

 

   

2

c

2

0
2

2

c
c2

00

x=a, and i = b.

from equation (4.4) 
i k

Using Taylor to linearize the term  around 
x-x

i k i
f(x,i)= =k ---------------------------------------------------------------------(4.7)

x-xx-x

 
 
 

Since, this term has two variables (position „vertical displacement‟, and coil current), 

extended form of Taylor series with two variables will be used, thus; this series yields 

the first two terms such as:

 

       

2
2 2

c c c

c 2 3 2

0 0 0 0

b k -2*k *b 2*k *bi
k = + x(t)+ i(t)

x-x a-x a-x a-x

( ( , )) ( ( , ))
( , ) ( , ) ( ) ( ) --------------------------------------(4.8)

( )*1! ( )*1!

---------------------

f a b f a b
f x i f a b x t i t

a b



  
  

  

    
    
        



   

-----------------(4.9)

Substituting  4.9  into 4.4
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     

     

2 2

c c c
k k2 3 2

0 0 0

2 2

c c c
k 2 1 2 k3 2 2

0 0 0

b k -2*k *b 2*k *b
m x = ( ) ( )-m g-k x

a-x a-x a-x

-2*k *b 2*k *b b k
m x =   - k  x    ( )  -m g ----------------(4.10)

a-x a-x a-x

fv

fv

x t i t

x i t

   
    
      

     
      

         









 

When the ball is fixed at position (
1

x ) zero; then, the velocity (
2

x ), acceleration: 

the derivative of velocity (
2

x ) and the coil current (i) are all equal zero. 

 

     

 

1 2 2

2 2

c c c

k k3 2 2

0 0 0

2

c

k2

0

Substituting  x , x , x , and i 0 into equation (3.6)

-2* k * b 2* k * b b k
m (0)=  (0) - k  (0)   (0)  -m g

a-x a-x a-x

b k
-m g = 0-------------------------------

a-x
 

fv



 



     
      

        

 
  
 





-------------------------------------------------------(4.11)

   

   

 

2

c c

k 2 1 23 2

0 0

2

c
2 3

k 0

subsituting  (4.11) into (4.10)

-2* k * b 2* k * b
m x =   - k  x    ( )--------------------------------------------(4.12)

a-x a-x

 from equation 4.12  and 4.6

-2*k *b
x =

m a-x

fv
x i t

   
   
      

 

 







 

   

2 c
1 2

k k 0

i
3

1 2
2

c c
2 1 23 2

kk 0 k 0

3

k  x 2*k *b
  -    ( ) 

m m a-x

K u(t) ( )
x

T

   x x

-2*k *b k  2*k *b
   x  - x    ( )  ---------------------------------(

mm a-x m a-x

   x ( )

fv

a

fv

x i t

i t

x i t

di
i t

dt



 
  

   


 

 
 
 
   
 
 
 
 

 









4.13)
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Figure (4.2): Plant of magnetic Ball levitation CE152 

 

   

1 12

c c
2 23 2

kk 0 k 0
3 3 i

The state space of linearized model shown in Fig.(4.2) around point (a,b) will be

0 1 0
x 0

-2*k *b -k  2*k *b
x 0

mm a-x m a-x
x K

1 T0 0
T

fv

a

a

x

x

x



 
   
   

           
     
        

    
  







 
1

2

3

u(t)-------------------------------(4.14)

y= 1 0 0 ----------------------------------------------------------------------------------(4.15)

x

x

x







 
 
 
  

  

 

 Adding the gain of DAC, ADC, and sensor gain as shown in Fig(3.2), will 

result in the following state space model. 

 

Figure (4.3): Plant of magnetic Ball levitation CE152 with ADC, and DAC 
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   

 

1
12

c c
2 23 2

kk 0 k 0
3 i

3

1

2

3

0 1 0x
0

-2*k *b -k  2*k *b
x 0 U (t)--------------------(4.16)

mm a-x m a-x
K

x 1 T0 0
T

Y = 0 0 -----------

fv
MU

DA

a

a

MU x AD

x

x

x K

x

K K x

x

 
    
                              
       
  

 
 
 
  







--------------------------------------------------------(4.17)

 
 

 

Equation (4.16) and (4.17) will be used with Table (4.1) shown in the next page 

to find state space model of linearized magnetic ball levitation. 

 

Table ( ‎4.1): Parameters of magnetic ball levitation CE 152 [22] 

Parameter Symbol Value 

ball diameter Dk 12.7x10-3 m 

ball mass mk 0.0084 kg 

distance from the ground and the edge of the magnetic coil Td 0.019 m 

distance of limits= 0.019 - Dk L 0.0063 m 

gravity acceleration constant g 9.81 m.s^-2 

maximum DA converter output voltage U_DAm 5 V 

coil resistance Rc 3.5 Ω 

coil inductance Lc 30 x10
-3

  H 

current sensor resistance Rs 0.25 Ω 

current sensor gain Ks 13.33 

power amplifier gain K_am 100 

maximum power amplifier output current I_am 1.2 A 

amplifier time constant= Lc/((Rc+Rs)+Rs*Ks*K_am) Ta 1.8694 x10
-5

  s 

amplifier gain= K_am / ((Rc+Rs)+Rs*Ks*K_am) k_i 0.2967 

viscose friction KFv 0.02 N.s/m 

converter gain k_DA 10 

Digital to Analog converter offset u_0 0 V 

Analog to Digital converter gain k_AD 0.2 

Analog to Digital converter offset y_MU0 0 V 

position sensor constant k_x 797.4603 

coil bias x_0 8.26 x10
-3

  m 

Aggregated coil constant  k_f 0.606 x10
-6

  

N/V 

coil constant =k_f/(k_i)^2 k_c 6.8823 x10
-6

  

N/V 
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Fig. (4.4) shows all possible positions and the center position of magnetic ball 

levitation‟s ball 

 

Figure (4.4): Position of ball at equilibrium 

At equilibrium 

 

1 1 2

1

1)      Ball velocity, and accelaration af ball = 0 x x x 0
2)      The derivative of current = 0 
(let us use the center)=> x 0.0095  (a=0.0095)m

   

 



 
 

Substituting the position of the ball at center as shown in Fig.(4.3), and 

parameters as in Table.(4.1) in equation (4.11) 

 

     

 

   

2 2

c k k
k2 2

c 0 c0 0

k
0

c

k
0

c

b k m g m gb b
-m g 0 =

k a-x ka-x a-x

m g
b a-x * --------------------------------------------------------------------------------(4.18)

k

m g 0.0084*9.81
b a-x * 0.0095-0.00826 *

k 6.8823e

 
      
 
 

  

   


 

i
3 i i

i

006

(0.00759) 11973.32287 0.13568 A (b=0.13568)

To compute the input voltage at this point.

from equation (3.2)

K u(t) ( )
x I 0 K u(t) ( ) 0 K u(t) ( )

T

( )
u(t) -------------------------------

K

a

i t
i t i t

i t



 


       





 ---------------------------------------------------------------(4.19)

0.13568
0.4573 V

0.2967
 
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The resulting state space model of linearized magnetic ball levitation CE152 is

 

 

 

MU

MU

x x0 1 0 01 1

x = -15821.62 -2.381 144.596 x + 0 U (t)-------------(4.20)
2 2

0 0 -53493.1 79357.013x x
3 3

x
1

Y = 159.49206 0 0 x ---------------------------------------------
2

x
3

      
      
      
         

 
 
 
 
 







---------------(4.21)

 

 

0 1 0 0

A= -15821.62 -2.381 144.596 ,   B= 0 -----------------------(4.22)

0 0 -53493.1 79357.013

C=  159.49206   0           0  ,       D=[0]-------------------------------------(4.23)

where
   
   
   
   
   

 

4.4. Controllability and Observability tests: 

Before, designing a feedback linearization controller, Controllability and 

Observability tests must be done. 

 

Where 

Controllability matrix 

 
2Q =[B AB A B]------------------------------------------------------------------------------------(4.24)c

 

Observability matrix 

 

2

= ------------------------------------------------------------------------------------------(4.25)

C

CA

CA



 
 


 
  

 

Substituting (4.22)  and (4.23) into (4.24) and (4.25) 

 

0 0    1.1476e7

 Q 0 1.1476e7   -6.139e11

7.9357e4 -4.2454e9   2.270953e14

since Q  has full rank , then system is controllable

c

c

 
 

 
 
  
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 159.49206 0 0

= 0  159.49206 0

-2523422.76 -379.750594860    23061.913907760

since  has full rank , then system is observable
  





 
 


 
  



 

Thus, state feedback control is possible 

4.5. Transfer function of linearized model 

 

 

 
 

1

1

9

3 24

0 1 0 0

159.49206 0 0 -15821.62 -2.381 144.596 0

0 0 -53493.1 79357.013

Transfer function G(s) is defined such as

5.3

: G(s)=C SI-A B

0 0

= 0 0

0 0

1

49*  1.432

.8

*

3*10
( )

10

s

s

s

G s
s s





      
      
      
          






    5 8

( )
--------

 8.464*
-------------(4.26)

( )10 10

s

D ss

N




 

4.6. Specified transfer function. 

The specification for the controller is to be able to position the ball at any arbitrary 

location in the magnetic field and to move the ball smoothly from one position to 

another. Thus, the specified transfer function can be obtained from the specifications 

such as:  ,os,  of 5%  and setlling time ,t ,  of 0.01 sec.s  

s

OS 5%; --------------------------------------------------------------------------------------------(4.27)     

t 0.01;  --------------------------------------------------------------------------------



 ------------(4.28)

 

To obtain a prototype, we need to translate the system specifications  to  and n such 

as;  

   

2 2

2 2

2

2 2

2

s

 

OS 0.05
 = = 0.6901  --------------------------------------------(4.29)

OS 0.05

1 1 0.6901
-  480.95  -----------------------------(4.30)

t 0.690

( )

1*0

( )

( ) ( )

ln . ln 0.05

.01
n

ln ln

ln ln

O S 



 









 









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 

   

 

   

2

2 2

2

22 2

 The second order prototype is -----------------------------------(4.31)
2* *  s

Substituting (4.31) and (4.32) into (4.33)

480.95

2*0.6901*480.95 480.9

2.313

5

1

5

663.8 2.313 5

2.313*

n

n n

e

s

s

s ss e



  


 

 
  

 
   

5

52

0
----------------------------------------------------------

663.8 2.313*
----------(4.32)

10s s 

   

   

52 10 --------------------------(4.33)

and pools -331.91 + 348.07i ,  -331.91 - 348.07

with charachteristic equation 663.8 2.313* 0

Since the linearized model of magnetic levitation CE152 is

i

 third or

s s

  

  

     

Third pole = 100*real(first pole)=-33

der system 

'equation(4.26)', we need 

191

 Required Pools = -331.91 + 348.

to add a th

07i ,  -331.

ird pole to our prototype such as 

91 - 348.07i , -33191 ---------(4    .34)

The specified Characteristic equation 

3 2( ) (33854.82) ( 22264166.593) (7677641650.843)--------------------(4.35)s s s s    

 

4.7. State feedback  

To obtain a state feedback control law, we need to find a matrix K that equates 

the pools of magnetic ball levitation CE 152 with the pools of the prototype. 

Given the system shown in Fig.(4.5),  

--------------------------------------------------------------------------------------(4.36)
---------------------------------------------------------------------------------------------(4.

x Ax Bu
y Cx
 



37)  

 

Figure (4.5): State space representation of a plant 

We need to construct a state feedback control law as shown in Fig.(4.6) 
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Figure (4.6): Plant with state feedback 

In feedback control system, the output states are fed back by the feedback vector 

(K) to the summing junction. Then the state equations for the closed loop system can be 

written as: 
( ) ( ) ------------------------------------------(4.38)x Ax Bu Ax B r Kx A BK x Br

y Cx
       




 
To obtain K equation, the specified characteristic equation ( )s  and 

denominator of linearized maglev D(s) should  be used, you could use the MATLAB 

built-in function „place‟ to evaluate K. 

Then,

1 2 3

3 2 1

K=[622.3322    1.9316   -0.2475]=[k  k  k ]-------------------------------------------------(4.39)

k =-0.2475, k =1.9316, k =622.3322----------------------------------------------------------(4.40)

Addi

1

1
1

ng the gain of position sensor k  and the gain of 
ADC k  to the gain k

k 622.3322
 new k 3.9019-----------------------------------------------(4.41)

k *k 797.4603*0.2

x

AD

x AD

   

 

4.8. State feedback and integral controller 

When applying the feedback gain to the maglev CE152, the ball didn‟t settle which 

means the steady state error is very large; thus, a feedback path from the output has 

been added to form the error, e, which is fed forward to the controlled plant via an 

integrator as shown in Fig. (4.7). The integrator increases the system type and reduces 

the error [19]. 

 

Figure (4.7): Plant with state feedback and integral control 
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K4 will be obtained by trial and error, The resulting system is shown in SIMULINK 

formulation in Fig. ( 4.8). 

 

 

 

Figure (4.8): CE152 with feedback linearization and integral controller 

4.9. Digital controller for feedback linearization 

The selection of the sampling time plays a big role in digital control; however, this 

topic is beyond this research; thus, a sampling time „ts‟=0.001 sec was chosen. All 

feedback gains will be taken from the output, so, The gain of position sensor kx and 

the gain of analog to digital converter kAD should be applied. 

In digital control, the velocity is obtained by taking the present value minus 

previous value of position divided by sampling time. 

2

1 1
,  multiplying gain k  by 6.2699-------------(4.42)

k *k * 797.4603*0.2*0.001x AD s

so
t
 

 

             The MATLAB built-in function c2d is used to convert integrator from 

continuous to digital using first order hold. Since, when the integrator was converted 

from analog to digital using zero order hold, the system did not work well, after that 

I used first order hold since it‟s more accurate and the system worked well. 

 

   
0.0005 z + 0.0005

c2d tf 1, 1 0 ,.001, 'foh ' ---------------------------------------------(4.43)
z - 1


 

 

The resulting maglev system with digital feedback linearization and integral 

controller is shown in SIMULINK formulation in Fig.( 4.9) 

 

X
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1

s
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Figure (4.9):  CE152 with digital feedback linearization and integral controller 

4.10. Parameters modifications for real time magnetic ball levitation 

When appling this controller to real time magnetic ball levitation CE152, the system did 

not work successfully. Modifications were made to the parameters of feedback 

linearization, as shown in Fig.(4.10) until the system worked well. 

 

 

Figure (4.10): Feedback linearization of real-time magnetic ball levitation. 

From Fig. (4.8) and (4.9) you can see that k1 changed from 3.902 to 1.2975, k2 changed 

from (6.2966*1.9316=12.1625) to 14.755, and There is no noticeable change when 

converting the value of k3. 

 

 

 

X

velocity

1

s
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6.8823 e-006 / (u - 0.0083 )^2
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1

s
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z-1

Unit Delay

z

1

Sum 3

Step

Signal Generator

Setpoint Offset

0.5

Scope 1

Power amplifier

and coil 1

0.2967

1.8694 e-005 s+1

Motion

force

Manual

 Switch

Gravity

force 1

0.0084 *9.8100

Gain 3

100

Feedback Gain 3

6.2699

Feedback Gain 2

-0.2475

Feedback Gain 1

1.9316

Feedback Gain

3.9020

Fc

DA Converter 1

D/A

Ball damping 1

0.02

Add 1
AD converter

and

Position sensor 1

A/D

1/m1

1/0.0084

X

sen_X

Analog

Input

present position

integrator

0.0005 z+0.0005

z-1

Unit Delay

z

1

Sum 3

Step

Signal Generator

Setpoint Offset

0.5

Manual Switch

K3

-0.0084

K2

 14 .755

K1

1.2975

Gain 4

5

Gain 3

25

Feedback Gain

0.2

Current _i

Analog

Input

Analog Output

Analog

Output

Add 2



www.manaraa.com

 

36 

 

 

Position sensor will read the position and convert it to volt. The maximum 

displacement from lowest to highest position is about 1cm as shown in Fig. (4.11). At 

lowest position „0 cm‟  the sensor will read 0V and from highest position „1 cm‟ the 

sensor will read 5V. To create an error signal, the sensed value (present ball‟s position) 

is subtracted from the desired value (required ball‟s position). Thus, the sensed value 

should be multiplied by „0.2‟ to convert it from voltage to position. 

5 volts is required to be applied on the coil to make the ball suspended at the 

upper pole „1cm‟ . Therefore, the control value should be multiplied by „5‟ to convert it 

from position to voltage. 

 

 

Figure (4.11): Lowest and highest ball‟s positions. 

 

Example: The reference signal is constant and equal 0.5 („required vertical 

displacement is 0.5cm ‟)  

 

 
 

Figure (4.12): Illustrative drawing of the need to add the feedback gain „0.2‟ 

 



www.manaraa.com

 37 

4.11. Simplification of feedback linearization of real-time system 

 Remove Gain 3, Gain 4 and feedback Gain from Fig(4.9), and then make the 

required changes. The resulting system is shown in SIMULINK formulation in Fig.( 

4.13) 

3

1,2

0.0005 z + 0.0005 0.0625 z + 0.0625
Integrator= *25*5 ------------------------------(4.44)

z - 1 z - 1
K =5*.0084 0.042--------------------------------------------------------------------------(4.45)

K
new





1,2 1,2K *5*0.2 K ---------------------------------------------------------------------(4.46)new  

 

 

Figure (4.13): First simplification of FBL of real-time maglev CE152. 

 Current sensor smoothes the response of the system; thus, removing it to 

approximate the system and to be able to program the system in any programmable kit, 

combining the circled terms. The resulting system is shown in SIMULINK formulation 

in Fig.( 4.14) 

14.755 z -14.755 16.0525 z -14.755
Circled terms= 1.2975 --------------------------(4.47)

z z
 

 
 

Figure (4.14): Second simplification of FBL of real-time maglev CE152. 
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 The circled block can be moved to arrowed locations in order to simplify the 

system. The resulting system is shown in SIMULINK formulation in Fig.( 4.15) 

0.0625 z + 0.0625 0.0125 z + 0.0125
Integrator=0.2* ----------------------------------(4.48)

z - 1 z - 1


 

 

 

Figure (4.15): Third simplification of FBL of real-time maglev CE152. 

The two circled blocks in Fig. (4.15) can be combined as shown in Fig(4.16) 

2

2

0.0125 z + 0.0125 16.0525 z -14.755
Circled terms=  

z - 1 z

16.065 z -30.795 z+14.7550

z
----------------------------------------------------------------------(4.49)

z

 



   
   
   

 

 

 
 

Figure (4.16): Simplification of FBL of real-time maglev CE152. 
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integrator
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In3
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In1
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4.12. Digital equations of feedback linearization  

Feedback linearization shown in Fig.(4.17) consists of three blocks: two transfer 

functions and saturation. The three blocks will be converted to equations that can be 

programmed using any programmable kit. 

4.12.1. Feedback Transfer function  

 

Figure (4.17): Feedback transfer function 

2 1 2

2 1

16.0650 Z   - 30.7950 Z  + 14.7550 16.0650   - 30.7950 Z   + 14.7550Z
--------(4.50)

Z   -  Z 1  -  Z

( ) 16.0650 ( )   - 30.7950 ( 1)  + 14.7550 ( 2)  ( 1)------(4.51)

A

senX

A n senX n senX n senX n A n

 


 

     

 

4.12.2. Integrator 

 

Figure (4.18): Integrator 

1

1

0.0625 Z+ 0.0625 0.0625 + 0.0625 Z
-------------------------------------------(4.52)

Z  -  1 1  -  Z

( )   = 0.0625 FB( ) + 0.0625 FB( 1) ( 1)----------------------------------(4.53)

B

FB

B n n n B n




 

     

4.12.3.  Saturation  

 

Figure (4.19): Saturation 

From (4.51) and (4.53) 

 

 OP = B-A -----------------------------------------------------------------------------------------(4.54)

if (OP>5) then OP=5;  elseif  (OP<0) then OP=0;-------------------------------------------(4.5



5)

OPS=OP;  

Equations (4.51), (4.53) and (4.55) should be used to wrie  VHDL code for feedback 

linearization 
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CHAPTER 5 METHODOLOGY AND APPROACH  

This chapter covers the approached methodology used to develop the control law 

for linear systems, used to deadbeat nonlinear system using multi-rate deadbeat 

controller, used to write VHDL code for deadbeat controller of magnetic ball levitation. 

5.1. Introduction 

The problem of tracking a general reference signal in a ripple-free deadbeat fashion 

for nonlinear, SISO multi-rate systems is considered. We give a design procedure for a 

controller under which the output of the closed loop system exactly coincides with the 

reference signal after a fixed (finite) time. The design provided here allows for constraints 

on control magnitude as well as on many time domain properties such as overshoot, norms 

of control signal and error signal.  

 
The Diophantine equation plays an important role in the design and synthesis of 

controllers in the frequency domain. The Diophantine equation has an infinite number of 

solutions that all provide an internally stabilizing controller. The parameterization of the 

Diophantine equation is based on obtaining a matrix equation with the two unknown 

expressed in matrix form 

 

5.2. Obtaining a model 

Fig. (5.1) shows the deadbeat controller for linear plant P which consist of the original 

plant to be controlled Gc and the modeled filter Mc 

 

Figure (5.1):  Block diagram of deadbeat controller 

 



www.manaraa.com

 41 

1 2 1

The following functions are written in q-domain

From figure (5.1)

* -------------------------------------------------------------------------------------------(5.1)

* - * * *
*  -

c c

P Mc Gc

R N Y N R N P Y
Y P

D D



 
  
 

2

2 1 1

2

1
1

2
2

1

2

* *

* * * * * *
----------------------------------------(5.2)

*

* *
* *

* * * *
*

*

* *

c

N P

D

Y N P R N P R N P
Y Y

Dc Dc Dc N P

numR numP
N

numR numP NdenR denPY
numP denR denP Dc denR numP N

Dc N
denP

numP NnumR
Y

denR denP Dc numP N

    


  








   ------------------------------------------------------(5.3)


 



 

1 2

From Equation number (5.3)

Y (Desired Response) will be equal Reference signal if and only if

* N   =  *Dc+ * N

and for fast response (deadbeat) all poles should be at Origin

numP denP numP   

 

2 1

2

1

*Dc+ * N  * N  1-----------------------------------------------------(5.4)

denP*Dc+numP*N = 1.--------------------------------------------------------------------------(5.5)

numP*N = 1.---

denP numP numP  



 -------------------------------------------------------------------------------------(5.6)

1

2

Transfer function between control and reference
Y

U= --------------------------------------------------------------------------------------------------(5.7)
P

substituting (5.2) into (5.6)

R*N
U=

Dc+N *P

nu

 
1

1

2
2

*N
* *N

----------(5.8)
* *Dc+ * * N

D +N *c

mR
denP numRdenR

numP denP denR denR numP

denP



 

   

 

1

2

2 1

2

Transfer function between Error signal and reference

R*N *P
E=R-Y=R-

Dc+N *P

denP*Dc+N *numP *numR- N *numP *numR
E= ------------------------------(5.9) 

denR* denP*Dc+numP*N



 
  
 
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Substituting (5.5) and (5.6) into (5.3),(5.8),and (5.9) 

 

1

2

1 1

2

numP*NnumR numR 1
Y = = =R---------------------------------------(5.10)

denR denP*Dc+numP*N denR 1

denP*numR*N denP*numR*N
U= = ------------------------------------(5.

den(R)*(denP*Dc+numP*N ) den(R)

   
   

  

   

 
2 1

2

11)

denP*Dc+N *numP *numR- N *numP *numR
E= =Zero------------------------(5.12) 

denR* denP*Dc+numP*N

 
  
 

 

The previous results are obtained by the default solution, which make the system 

to settle, and eliminate the error within smallest time. The control signal will depend 

only on denominator of plant, numerator and denominator of the reference signal, and 

the obtained polynomial N1, so if the infinity norm of control signal is larger than 

acceptable value for any programmable kit such as FPGA, DSP Kit, Microcontroller, 

and so on. We should decrease the maximum absolute value of control signal by 

evaluating another polynomial instead of N1, so let us called the previous N1 as N1min. 

 

   

   

1min 1min 1

1min 1

1min 1

1new

Zero term will be added to the equation (5.6)

+ Q  * +numP*

 *  + Q  + numP* 1

Defining new N1 , and Q1

numP*N 0 1 numP*N *  1

numP*N * numP* * 1

numP* N

N

denR

denR

Q denR

denR denR

denR



 

    

 



1 1

1 1

V V

V V

1min 1

1new 1min 1

=N - denR*V ---------------------------------------------------------------(5.13)

Q =Q + numP*V --------------------------------------------------------------(5.14)

 

Substituting (5.13) into (5.3),(5.8), and(5.9) to find the new transfer functions 

from output, control, and error signals versus reference signal. 

 

 

 1min 1 1new

2 2

numP*NnumR

denR denP*D +numP*N

R-------------------------------------------------------------------------------------------------(5.15)

c

   
    

  

numP* N - denR*VnumR
Y = 

denR denP*Dc+numP*N

Y =

 

 

1min 1 1new

2

1min

denP*numR*N
=

N den(R)

R*denP numR* ------------------------------------------------------------------------(5.16)


denP*numR* N - denR*V

U=
den(R)*(denP*Dc+numP* )

U= N
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    
 

   

 

2 1min

2

2 1new

2

N

N

denP*Dc+N *numP *numR- N *numP *numR
=

denR* denP*Dc+numP*N

E=zero---------------------------------------------------

 
 
 
 
 

 
  

 

denP*Dc+ *numP *numR- N - denR*V *numP *numR
1

E=
denR* denP*Dc+numP*

---------------------------------------------(5.17) 

 

The previous results make the system to settle, and eliminate the error. The 

control signal will depend only on denominator of plant, numerator and denominator of 

the reference signal, and the polynomial N1new that depend on the vector V1. 

 

Paz evaluates V1 that decrease the norm of control signal by quadratic 

programming. 

 

In the next two sections, two approaches will be discussed to evaluate V1 by 

another method. 

5.3. Decreasing control signal using the first approach 

Minimizing control signal by minimizing its numerator by two steps 

V1 will be obtained by making equation (5.13) equal zero; this will be solved by making 

all coefficient of each order equal zero. 

 

1 1min 1

1min 1

N 0 N - denR*V 0-------------------------------------------------------------------(5.18)

where N  and denR are polynomial with known coefficients, while   vector with 
unknown coefficients

V is

  

 

 

Steps: 

 

 Choosing  the length of V1 then make a polynomial in q-domain 
2( * ),  ( * * ),  and so on. where a,b,c,.... are unknowns.a q b a q b q c    

 

 Substituting V1 into (5.18) and solving the polynomial by making the coefficient 

of each order equal zero. Where N1min and Dr are polynomials with known 

coefficients. Such as:  
2

1 2 1 2 3 1 2 3(n z+n ), (n z n z+n ), and so on. where n ,n ,n ,.... are knowns.  

Then,  

1min 1 (N * 0)Dr V   



www.manaraa.com

 

44 

 

4 3 2

1 2 3 3 4 5

6 7 8 9 10 11

1

2 3

3 4 5

6 7 8

9 10 11

( * )* (n *a +n *b)* ( * n *  +n *c)*

(n *b+n *c-n )* (n * * ) 0---------------------------------------(5.19)

* 0

n *a +n *b 0

* n *  +n *c 0

n *b+n *c-n 0

n * *

n a q q n a b q

q n c n d

n a

n a b

n c n d

    

   

 




  



  

1

2 3

3 4 5

6 7 8

10 11 9

1

1

2 3

3 4 5

6 7

10

0 0 0 0

0 0 0

  0  0

0 0

0 0

Using pseudo inverso to find the coefficients of V

0 0 0

0 0

0

0 0

0 0

n
a

n n
b

n n n
c

n n n
d

n n n

n
a

n n
b

n n n
c

n n
d

n

   
     
     
      
     
     
          

 
 
  
 
 
 





†

8

11 9

0

0

0 ----------------------------------------------(5.20)

n

n n

    
    
    
    
    
    
        

 

Example:  

Here, we consider the system in q-domain 

2 2

0.0015171 (1+110q) (1+3.265q) (1+0.4257q) 

(1 2.166 1.1

(1+0.0198

81 )(1

1q)

1.972 )
Pq=

q q q q     
 

Discrete time reference signal in q-domain 

2

0.020769 q (1+

(1 1.972

q)
q=

)
R

q q   
 

Minimum order equation of N1 

1min -19.6779 *q + 2.N = 8468
 

 

Computing the coefficients of V1 with length equal 3 
2

1

2

 * *  where a,b,and c are unknown ---------------------------------(5.21) 

denR=   -1.9723 *q  +  1----------------------------------------------------------------------(5.22)

Let V a q b q c

q

  

1min

4 3

1min 1

2

Substituting   (5.21), (5.22), N   into (5.18)

 N - denR*V =( ) (1.9723 a - b)

( 1.9723  -c) (-b+1.9723c-1.9678) (2.8468 ) 0-------------------------(5.23)

a q q

a b q q c

   

     


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0 1 0 0 0

1.9723 a - b 0 1.9723 1 0 0

   1.9723  -c=0 1 1.9723 1 0

-b+1.9723c-1.9678 0 0 1 1.9723  1.9678

2.8468 0 0 0 1 -2.8468

a

a

ba b

c

c

       
     

        
           
      
         

            

 

†

1

1 0 0 0

0.58571.9723 1 0 0

* 1.37191 1.9723 1 0

1.96160 1 1.9723  1.9678

0 0 1 -2.8468

0.5857

 V = 1.3719

1.9616

a

b

c

     
    

       
          
       
           

        

 
 


 
  

  
Substituting N1min, denR, and V1 into (2.9) to obtain new N1 will increase the order of 

N1 as shown in the following relation 

1 1mi

2 4

n 1

30.8852 0.5292 0.1585 0.21   N =N - denR*V = ------66 0.5857 (5.24)q q q q    
 

 The order of new N1 is larger than the order of N1min by three; therefore, the 

length of vector V1 will increase the order of transfer functions from output, control, 

and error signals versus reference signal by three. Therefore, the settling time will be 

increased by three sampling times.  

5.4. Decreasing control signal by second approach 

Minimizing control signal by evaluating the new vector called “bestV1” by combining 

the vector which was obtained by quadratic programming (Paz method) with vector 

which was obtained by my first approach  

Steps: 

 

 Computing Vector V1 by  Paz method and  infinity norm of control signal using 

this vector 

 Computing Vector V1 by  my first approach and  infinity norm of control signal 

using this vector 

 Changing the elements of the vector which was obtained by my approach with 

elements of the vector which was obtained by Paz (element by element), and 

deciding which element of my vector will decrease the norm of control signal 
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when replacing with element of Paz vector to make a new vector called “Vnew1”. 

This is called “First step” 

 Subtracting Vector which was obtained by Paz from vector Vnew1 to find the new 

vector and add the partial of this vector multi-times to Vnew1 and still adding 

while the norm of control signal is still decreasing. This is called “Second step” 

The previous steps will be done as follow: 

 

Paz Vector 

 1 2 3 4  =     ......... ,

Computing the norm of control signal using X

 norm(U,inf)=normx----------------------------------------------------------------------(5.25)

X nx x x x x

 

 

 First approach Vector          

 1 1 2 3 4

1

1

  =     ......... ,

Computing the norm of control signal using V

 norm(U,inf)=normv --------------------------------------------------------------------(5.26)

V nv v v v v

 

First step:  

           Changing the first element of X with first element of V1  

 

 1 1 2 3 4 n

1

1

V   =  x  x  x  .........x ,

Computing the norm of control signal using V

 norm(U,inf)=normV ----------------------------------------------------------(5.27)

new

new

new

v

            

 

Changing the second element of X with second element of V1     

 2 1 2 3 4 n

2

2

V   =  v  x  x  .........x ,

Computing the norm of control signal using V

 norm(U,inf)=normV ----------------------------------------------------------(5.28)

new

new

new

x

 

 

Changing the third element of X with third element of V1  

 3 1 2 3 4 n

3

3

V   =  x  v  x  .........x ,

Computing the norm of control signal using V

 norm(U,inf)=normV ----------------------------------------------------------(5.29)

new

new

new

x
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Changing the fourth element of X with fourth element of V1 

[ ]4 1 2 3 4 n

4

4

V   =  x  x  v  .........x ,
Computing the norm of control signal using V
 norm(U,inf)=normV ----------------------------------------------------------(5.30)

new

new

new

x

          

.

.

.
 

Changing the nth element of X with nth element of V1 

[ ]1 2 3 4 nV   =  x  x  x  .........v ,
Computing the norm of control signal using V
 norm(U,inf)=normV ----------------------------------------------------------(5.31)

newn

newn

newn

x

 

 

 Using elements which decrease the norm                    

[ ]
2 4 newn

1 2 3 4 n

Assume that normV ,normV ,and normV normx
 the new vector will be V x  v  x  v  .........v -----------------------(5.32)

new new

new

<
∴ =  

 

The infinity norm obtained using Vnew less than infinity norm obtained by using 
any of the previous vectors 

 

Second step:  

The difference between Vector Vnew equation(5.32) and X equation (5.25) will 
be used to decrease the infinity norm of control signal by multi iterations as follow: 

[ ] [ ]

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 2 3 4 1 2 3 4

1 1 2 2 3 3 4 4

2 2 4 4

The difference between X and 

-    v   v  v  x   x  

-------------------------------(5.33)

  

0 0 

new

d new n n

n n

n n

V V X x x x x x

V

x x v x x x v x v x

v x v x v x

= = −

=

=

⎡ ⎤− − − − −⎣ ⎦

− − −⎡ ⎤⎣ ⎦

… …

…

…

 When adding Vd to X, the infinity norm of control signal is decreased; thus, the 
partial of Vd will be still added to X while the infinity norm of control signal is still 
decreasing as follow: 

 



www.manaraa.com

 

48 

 

while new norm < brevious norm

V
     V = V + , where L is any positive decimal number --------------(5.34)

L
      compute new infinity norm

end

V = V

for example: the while loop was done 4 times a

.

d
new new

best new

2 4
1 2 4

nd L=10

the vector which I called V
best

4v 4v 4v
V = x v + x v + v + -------------(5.35)

310 10 10

n
best n





      
            



 

5.5. Multi-rate ripple-free deadbeat controller for nonlinear system 

 Magnetic ball Levitation CE152 was chosen as a case study since this apparatus 

is placed at IUG laboratory. 

Ripple-free deadbeat control is desired to be used to meet the certain specifications such 

as: Finding second order approximation of maglev CE152 with feedback linearization 

using two parameters rising time (or settling time) and overshoot. 

Equations (2.12), (2,13), and (2.14) will be used 

2

2 2
The second order approximation --------------------------------------(5.36)

2

n

n ns s



  


 

Converting the approximated model from analog to digital using required 

sampling rate in deadbeat Controller 

2

2
-------------------------------------------------------------------------------------------------(5.37) 

1

Where K,L,M, and N are unknown and depen

The second order approximation in q-domain

Kq Lq

Mq Nq



 

d on damping ratio and natural frequency  

The reference signal in q-domain 

2

2

2

 signal R(q)= -----------------------------------------------------------------------(5.38) 
(1 )

in z-domain

 signal R(q)= ----------------------------------------------
( )

O Pq
Input

Qq Rq

Oz Pz
Input

z Qz R



 



 
-------------------------(5.39) 

Where O,P,Q, and R are unknown

Numerator and denominator of plat and reference signal in q-domain  
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2 2 2

2 2

numP( ) ,denP( ) 1,denR( ) 1------------(5.40) 

numP(z)=  ,denP( ) ,denR( ) ----------------(5.41) 

q Lq Qq q Nq Mq q Rq Qq

L Qz z N Mz z z R Qz z

       

      

 

Evaluating the minimum order for N1 and Q1 

1 1Order of vector N  and Q =max( order(numP), order(denR) ) -1 = 1---------------(5.42)  

Evaluating the minimum order for N1 and Q1 

2 cOrder of vector N  and D =max( order(numP), order(denP) ) -1 = 1---------------(5.43)  

Defining two polynomials with order equal „1‟ with unknown coefficients and  

making the first Diophantine equation. 

let N1 =a*q+b and Q1 = c*q+d    where a, b, c, and  d are unknown----------------(5.44)

First Diophantine equation (Np *N1)+(Dr*Q1) = 1 ----------------------------------(5.45)

 Substituting (5.40) and (5.44) into (5.45) 

2 2(L* K* )(a*q+b) ( q +Q*q+1)(c*q+d) 1 0------------------------------ 5. 6R ( 4 )q q     
3 2 (L *a+R*c)*q ( K *  L* * * )*

( K * * )* ( 1) 0---------------------------------------------------------(5.47)

a b Q c R d q

b c Q d q d

     

      

All coefficients of equation (5.47) should be equal zero, to find all unknowns a,  

b, c and d,  

L *a+R*c 0 L *a+R*c 0

K *  L* * * 0 K *  L* * * 0
------------(5.48)

K * * 0 K * * 0

1 0 1

a b Q c R d a b Q c R d

b c Q d b c Q d

d d

    
   

       
    
        
   

     

 

Using pseudo inverso to solve equation(5.48), in this special case we don't need to use 

pseudo inverso, in general I programmed an m-file to solve any equation either the matrix is 

square or not

L 0 0

K L

R 0

0
-------------------------------------------------------------------------(5.49)

0 K 1 0

0 0 0 1 1

a

Q R b

Q c

d

     
     
     
     
     
     

†
L 0 0 0

K L 0
*  --------------------------------------------------------------(5.50)

0 K 1 0

0 0 0 1 1

 N1= a q+b , Q1 = c*q+d , now a, b, c, and d are knowns

a R

b Q R

c Q

d

     
     
      
     
     
     


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Defining two polynomials with order equal „1‟ with unknown coefficients and 

            making the second Diophantine equation. 

2let N  =a*q+b and D  = c*q+d    where a, b, c, and  d are unknown----------------(5.51)

Second Diophantine equation (numP*N2)+(denP*Dc)=1 --------------------------(5.52)

c

              

Substituting (5.40) and (5.51) into (5.52) 

 

     2 2L* Q*q a*q+b N*q  +M*q+1 c*q+d 1 0------------------------- .+ 53)q (5   
 

3 2(L* N * )* (Q* L* +M * N * )*

( Q*  +M * )* ( 1) 0-----------------------------------------------------(5.54)

a c q a b c d q

b c d q d

     

     

 

All coefficients of equation (5.47) should be equal zero, to find all unknowns a, 

b, c and d.

  

 

L* N* 0 L* N* 0

Q* L* +M * N* 0 Q* L* +M * N* 0
------------------------(5.55)

 Q*  +M * 0  Q*  +M * 0

1 0 1

Using pseudo inverso to solve equation(5.48)

L 0 N 0

Q L M N

0 Q 1 M

0

a c a c

a b c d a b c d

b c d b c d

d d

      
   

     
   
      
   

     





†

0

0
--------------------------------------------------------------------------- 5.56( )

0

0 0 1 1

 

L 0 N 0 0

Q L M N 0
* ------

0 Q 1 M 0

0 0 0 1 1

a

b

c

d

a

b

c

d

     
     
     
     
     
     

     
     
     
     
     
     

 ------------------------------------------------------------------(5.57)

    

   N2 =a*q+b and Dc = c*q+d---------------------------------------------------------------------------(5.58)   

  These equations will be used in the next step to find deadbeat controller for 

approximated model of maglev CE152 with feedback linearization 
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Figure (5.2): CE152 with third FBL and its approximated model. 

 

 

Deadbeat controller for magnetic ball levitation with feedback linearization will 

be found by evaluating deadbeat controller for its approximated model, thus deadbeat 

controller will be found for 
2

1000

s +80s+1000
 to follow reference signal

2

6

( 4
R(s)= 

)s 
. 

 

 

 

Converting the plant and reference signal from s-domain to q-domain with 

sampling time = 0.1 sec. 

2

0.038652 q (1+0.7662q)
---------------------------------------------------( )

0.0003 (1 )
( )

(1 2 )

------------(5.59)
(1-0.8564q) (1-0.5247q)

-------------------------------------------------------

P q

q q
R q

q q






 
--------------------(5.60)

nump =[0    0.0387    0.0296] , denp =[ 1   -1.3811    0.4493]             

 

Numerator and denominator of plat and reference signal in q-domain 

2 2

2

0.0296* 0.0387*q , denP=0.4493*q  -1.3811*q+1-----------------------(5.61)

q -2*q+1--------------------------------------------------------------------------------(5.

numP(q)= q +

denR(q)= 62)

z-domain

numP(z 2

2

0.0296 0.0387*z , denP=0.4493 -1.3811z+z ---------------------------------(5.63)

1-2*z+z ----------------------------------------------------------------------------

)= +

den ----(5R(z)= .64)  

 

Evaluating the minimum order for N1 and Q1 using equation (5.42) 

velocity

1

s

variable gap

6.8823 e-006 / (u - 0.0083 )^2

position

1

s

Zero -Order

Hold 2

Unit Delay

z

1

Sum 3

Step 1

Second Order Approximation

s  +80s+10002

1000

Scope 3

Power amplifier

and coil

0.2967

1.8694 e-005 s+1

Motion

force

K2

20

K1

2.2

Integrator

1

s

Gravity

force

-0.0084 *9.8100

Gain 3

25

Fc

DA Converter

D/A

Ball damping

0.02

Add1

AD converter

and

Position sensor

A/D

1/m

1/0.0084
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1 1Order of vector N  and Q =max( 1, 2) -1=1----------------------------------------------(5.65)  

 

Evaluating the minimum order for N1 and Q1 using equation (5.43) 

2 cOrder of vector N  and D =max( 1, 2 ) -1=1--------------------------------------------(5.66)  

 

Defining two polynomials with order equal „1‟ with unknown coefficients and 

            making the first Diophantine equation using equation (5.44) and (5.45) 

 

 N1 =a*q+b and Q1 = c*x+d    where a, b, c, and  d are unknowns------------------(5.67)

 Substituting (5.61),(5.62) and (5.67) into (5.45) to make the first Diophantine equation 

2 2

3 2

First Diophantine equation (Np *N1)+(Dr*Q1)=1 

(Np *N1)+(Dr*Q1)-1=0

(0.0296* 0.0387* )(a*q+b) ( -2* 1)(c*x+d) 1 0

 (0.0296 *a+c)*q ( 0.0387*  0.0296* 2* )*

( 0.0387* 2* )* ( 1) 0-----

q q q

a b c d q

b c d

q

q d



    

     

    





---------------------------------------------------(5.68)

Evaluating a, b, c, and d by making all coefficients of equation (5.68) equal zero to find 

all unknowns a, b, c and d using equations (5.47), (5.49) and (5.50). 

 

 

†

0.0296 0 1 0 0

0.0387 0.0296 2 1 0

0 0.0387 1 2 0

0 0 0 1 1

0.0296 0 1 0 0  -21.0022

0.0387 0.0296 2 1 0    35.6409
 *  

0 0.0387 1 2 0     0.62

0 0 0 1 1

a

b

c

d

a

b

c

d

     
     


      
     
     
     

     
     


       
     
     
     

20

    1

 N1=35.64 - 21 q , Q1=1 + 0.622 q

 
 
 
 
 
 



 

 

Defining two polynomials with order equal „1‟ with unknown coefficients and 

making the second Diophantine equation using equation (5.51) and (5.52) 

 

 N2 =a*q+b and Dc = c*x+d    where a, b, c, and  d are unknowns------------------(5.69)  

Substituting (5.61), and (5.69) into (5.52) to make the second Diophantine equation 
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3 2

Second Diophantine Equation (numP*N2)+(denP*Dc)=1

(numP*N2)+(denP*Dc)-1=0

(0.0296* 0.4493* )* (0.0387* 0.0296* -1.3811* 0.4493* )* ...

( 0.0387*  -1.3811* )* ( 1) 0---------------------------

a c q a b c d q

b c d q d

    

   



-----------------------(5.70)  

Evaluating a, b, c, and d by making all coefficients of equation (5.70) equal zero to find 

all unknowns a, b, c and d using equations (5.54), (5.56) and (5.57). 

0.0296 0 0.4493 0 0

0.0387 0.0296 -1.3811 0.4493 0
 

0 0.0387 1.0000  -1.3811 0

0 0 0 1 1

0.0296 0 0.4493 0

0.0387 0.0296 -1.3811 0.4493
 

0 0.0387 1  -1.3811

0 0 0 1

a

b

c

d

a

b

c

d

     
     
      
     
     
     

   
   
    
   
  
   

†
0 -8.3666

0 21.4633
*     

0 0.5515

1  1

 N2=21.46 - 8.367 *q , Dc=1 + 0.5515*q

   
   
   
   

    
   

 

 

1 2 cN =35.64 - 21 q ,  N =21.46 - 8.367 *q , and D =1 + 0.5515*q will be used in 

the following chapter to simulate the deadbeat controller for maglev CE152 with 

feedback linearization. 

 

5.6. Converting real-time model from blocks to equations 

Ripple-free deadbeat controller with feedback linearization for real-time 

magnetic ball levitation shown in Fig.(4.2) consists of two subsystems. The first 

subsystem is feedback linearization that consist of two transfer functions with sampling 

rate equal 0.001 sec and the second subsystem is deadbeat controller that consist of 

three transfer functions with sampling rate equal 0.01 sec. 

 

 

Figure (5.3): SIMULINK deadbeat controller for real-time maglev CE152 

 

position -x

Analog

Input

Setpoint Offset 1

0.5

Reference Signal
Analog Output

Analog

Output0.01

In1

In2
Out1

0.001

In1

In3

Out2
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Converting real time model from blocks to equations is very important to 

program any circuit or controller on any programmable kit such as PIC, DSP, FPGA, 

and so on.  

Some programmable kits don‟t deal with floating points; thus, fractional number 

will be removed with small very affecting on its performance by multiplying the 

numerator and denominator of Transfer function by large number 2
n
 before 

approximation, where n is positive integer number. 

2
n
: multiplying binary number by „2‟ n-times means shifting the binary number 

to the left n-bits 

 

First subsystem: feed-Back linearization 

Feedback linearization, shown in Fig.(5.3) consists of three blocks:  integrator, 

feedback transfer function, and saturation 

 

 

Figure (5.4): Feedback linearization for real-time maglev CE152 

 

 

 
a) Integrator  

Integrator of feedback linearization can be converted to equation and re-drawn 

by SIMULINK model as shown in Fig.(5.5) 

OP 0.0625 z + 0.0625
 = --------------------------------------------------------------(5.71)

IN z - 1

 

Multiplying numerator and denominator of equation (5.71) by 128 

 
1

1

OP 8 z + 8 8  + 8z
 =  = 

IN 128 z - 128 128 - 128 z

 128*OP = 8*IP+8*IP1+128*OP1-------------------------------------------------(5.72)






  

 

Out 2

1
integrator

In1 Out1

Feed _Back

In1Out1

In3

2

In1

1
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Figure (5.5): Integrator 

All gains in the previous figure are not fractional number except the output gain, 

7

1 1

128 2
 => shifting the output binary number to the right 7 bits. 

 

 
b) Feedback Transfer Function  

Feedback transfer function of feedback linearization can be converted to 

equation and re-drawn by SIMULINK model as shown in Fig.(5.6) 

1 2

1

OP 16.0650   - 30.7950 z  + 14.7550z
---------------------------------------(5.73)

IP 1  z

 




  
 

Multiplying numerator and denominator of equation (5.73) by 128  

 
1 2

1

OP 2056 3942 1889
 ----------------------------------------------------(5.74)

IP

128 * OP  =  2056*IP  -  3942*IP1  +  1889*IP2+ 128* OP1 ---------------(5.

128 12

75)

8

z z

z

 





 




 

 
 

Figure (5.6): Feedback transfer function 

 

All gains in the previous figure are not fractional number except the output gain, 

7

1 1

128 2
 => shifting the output binary number to the right 7 bits. 

Out 1

1

Unit Delay 1

z

1

Unit Delay

z

1

Gain 3

128

Gain 2

1/128

Gain 1

8

Gain

8

In1

1

Out 1 
1 

Unit Delay 3 
z 

1 

Unit Delay 2 
z 

1 

Unit Delay 1 
z 

1 

Unit Delay 
z 

1 

Gain 4 

1889 

Gain 3 

128 

Gain 2 

1 / 128 

Gain 1 

3942 
Gain 

2056 

In 1 
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All blocks of Feedback linearization 

Feedback linearization of maglev CE152 can be re-drawn by SIMULINK model 

as shown in Fig.(5.6) 

 

 

Figure (5.7): Feedback linearization of maglev CE152 

Magnetic ball levitation CE152 worked successfully when applying the block 

diagram shown in Fig. (5.7); therefore, feedback linearization can be programmed on 

any programmable kit without using fractional number by programming the two 

equations (5.72) and (5.75). 

 

Second subsystem: Deadbeat controller 

Deadbeat controller consists of three blocks: N1, N2, and 1/Dc. 
a) N1  

N1 can be converted to equation and re-drawn by SIMULINK model as shown 

in Fig.(5.8) 

OP 26.1502 z - 15.4985
= -------------------------------------------------------------(5.76)

IN z

 

Multiplying numerator and denominator of equation (5.76) by 128 
1OP 3347.2256 z-1983.808

 =
IN 128 z 128 

128 * OP = 3347 * IP - 1984 * IP1-------------------------------------------

3347 1

-----

894

-(5.77)

z 





 

Figure (5.8): N1 of deadbeat controller 

All gains in the previous figure are not fractional number except the output gain, 

7

1 1

128 2
 => shifting the output binary number to the right 7 bits. 

Out 1
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1
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Gain 3 

128 

Gain 2 
1 / 128 

Gain 1 
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b) N2  

N2 can be converted to equation and re-drawn by SIMULINK model as shown in 

Fig.(5.9) 

OP 3.4460 z   -1.6353
= ---------------------------------------------------------------------(5.78)

IP z
 

Multiplying numerator and denominator of equation (5.78) by 128 

 
1OP 441 z-209

IP 128 z 128

128 * OP = 441 * IP - 209 * IP1----------------------------------------------------(5.79

2

)

441 09z 

 





 

 

 

Figure (5.9): N2 of deadbeat controller 

 

All gains in the previous figure are not fractional number except the output gain, 

7

1 1

128 2
 => shifting the output binary number to the right 7 bits. 

 

c) 
1

Dc

 

 
1

Dc

can be converted to equation and re-drawn by SIMULINK model as shown 

in Fig.(5.10) 

OP Z
----------------------------------------------------------------------(5.80)

IP Z +   0.60266


 Multiplying numerator and denominator of equation (5.80) by 128 

1

OP 128 Z 128

IP 128 Z +   77 128  +   77Z  

128 * OP  =128*IP - 77 * OP1--------------------------------------------------------(5.81)




 

Out 1

1

Unit Delay

z

1

Gain 2

1/128

Gain 1

209

Gain

441

In1

1
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Figure (5.10): 
1

Dc

of deadbeat controller 

 

Deadbeat model 

Deadbeat controller of maglev CE152 can re-drawn by SIMULINK model as 

shown in Fig.(5.11) 

 

 

 

Figure (5.11): Deadbeat of maglev CE152 

 

Therefore, deadbeat controller can be programmed on any programmable kit 

without using fractional number by programming the three equations (5.77),(5.79) and 

(5.80) 
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1

Out 1
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1
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z

1
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5.7. Writing VHDL code for deadbeat controller  

In this section, VHDL code for deadbeat controller shown in Fig. (5.12)  will be written 

using equations (5.77): 128 * OP = 3347 * IP - 1984 * IP1  , (5.79):  

128 * OP = 441 * IP - 209 * IP1, and (5.81): 128 * OP  =128*IP - 77 * OP1.  

 

 

Figure (5.12): Deadbeat of maglev CE152 

There are two important steps after evaluating the equations to be programmed 

 Determining number of bits required for registers and signals in VHDL 

language. 

Inputs and output are both 8 bits

The largest constant  number (3347)  requires 12 bits  

the summation of multiplication terms for  equation (5.72) and (5.75) are 4+2=6 terms

1 bit for -ve or +ve sign and one more bit.

 20+6+1+1=28 bits will be used  
 

 Converting constant numbers of equations to be programmed from decimal to 

binary using suitable number of bits. 

28 bits (used for registers and signals)- 8 bits (used for input and output 

signals)=20 bits 

 

3347 "00000000110100010011";

1984 "00000000011111000000";

441  "00000000000110111001";

209  "00000000000011010001";

128  "00000000000010000000";

77    "00000000000001001101"

----

a

a

a

a

a

a













 
 
 
 
 
 
 
 
 

----------------------------------------(5.82)

 

 

You can see VHDL code for deadbeat controller in Appendix A 
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D

Out 1

1
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z

1

------------
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z

1.0000 z+0.60266

In2

2

In1
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CHAPTER 6  
SIMULATION AND REAL-TIME APPLICATION 

This chapter consists of five sections: the first section discusses evaluating new 

vector that can reduce infinity norm of control signal, 2-norm of error signal and 

overshoot for linear systems and linearized nonlinear systems. Second section discusses 

evaluating second order approximation of linearized magnetic ball levitation. Third 

section discusses evaluating multi-rate ripple free deadbeat control for SIMULINK 

model of magnetic ball levitation CE152. Fourth section discusses evaluating multi-rate 

ripple free deadbeat control for real-time magnetic ball levitation CE152 using data 

acquisition card MF624 and real-time toolbox in SIMULINK environment. Fifth section 

discusses simulation of VHDL code using Xilinx DSP toolbox 

6.1. Improving deadbeat controller for linear systems 

In this section, improving deadbeat controller for linear system by evaluating the 

best vector which can reduce the maximum absolute value of control signal (required 

energy), reduce overshoot, and reduce infinity norm and H2-norm of the tracking error.  

 

Figure (6.1): Deadbeat closed loop system 

 

Example: 

 Given the system 
2

exp(-0.2*s
200

Gc =
s

)
- 2s + 2

 with time delay = 0.2 sec. We wish to track 

the sinusoid R(t) = sin(2t+pi/5) and minimizes the infinity norm of control energy.  

 

Tracking model 
2

100
Mc =

s + 4
 and the length of vector is 3 will be used.  

 

The continuous tracking model filter, is a requirement that ensures the exact tracking of 

the reference signal R(t) occurs with no ripple after the transient period[11]  

 

2

100
Mc =

s + 4
 is chosen since Laplace transform of sin (2t) = 

2

2

s + 4  
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If we choose the sampling time = 0.1 sec. then: 

 

 The reference signal and plant in q-domain will be,  

 

R(q)= -------------------------------------------
0.19935 (1 0.

----
7573 )

2(1 1.
---------------------(6

96 )
.1)

q q

q q



   
 

2 2

0.086608 (1 10.28 )(1 1.041 )(1 0.1054 )

(1 2.166 1.181
P(q)= -------------------

)(1 1.972
------------------(6.2)

)

q q q q

q q q q

  

   
 

 

Computing the minimum order of N1 and Q1 using Equation (5.42) 

Computing the minimum order solutions to the first Diophantine equations using 

equations (5.45) to (5.50), we obtain: 

 

---------
1 1.49 1

------
.111 .

2 31 1 1
----------

.831 1.211 0.1085
------------------------------(6.3)

.

N q

Q q q q

  
 

     

 

 

Computing the minimum order of N2 and Dc using Equation (5.43) 

Computing the minimum order solutions to the second Diophantine equations using 

equations (5.51) to (5.58), we obtain: 

 
2 3

2 3

2 6.73 1.482 1.197 3.434

1 3.577 2.97 0.274
------------------------------------------------

6
----(6.4)

N q q q

Dc q q q

    

 


 

 

 

 

After that,  

Computing the transfer functions from output, control, and error signals versus 

reference signal using equations (5.3),(5,7), and (5.9) or using RFsys.m in Appendix B, 

we obtain: 

 
2 3 4 5

2 3 4 5

2 3 4

1 0.129 1.378 0.435 0.999 0.109

1.49 7.309 1.436 1.41 6.925 1.3

.---------------------------------(6.5)

.-------------------------------(6.57

0.129 1.378 0.435 0.999

6)

Ter q q q q q

Tur q q q q q

Tyr q q q q

     

     

    5 -----------------------------------0.10 --( )9 7. 6.q

 

 

Note that: all Poles of transfer functions (6.5), (6.6) and (6.7) are at origin, due to the 

ripple free deadbeat property. Where all of them are polynomials with order equal 5, 

meaning that the system will settle down after 5 sampling times as shown in Fig. (6.2)   
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Figure (6.2): Time response of minimum order solutions  

(a) Error signal   (b) Control Signal   (c)  Response 

 

Fig. (6.2) shows error, control, and output signals where all of them are polynomial with 

order equal 5 and since there exist time delay equal 2 sampling times, they have settled 

after 7 sampling times with overshoot = 61.53 %, settling time = 0.7 sec, U


 = 

16.6125, E


= 2.2468, and 
2

E =3.6425 

 

 Decreasing control signal by vector which was produced by Paz using MATLAB built-

in function „qp‟ [11]. We obtain: 

 

V1=[ 0.3082   0.7534  1.0847]  

Computing the transfer functions from output, control, and error signals versus 

reference signal using equations (5.3),(5,7), and (5.9) or using RFsys.m in 

Appendix B, we obtain: 

 

2 3 4 5 6 7 8

2 3 4 - 6 7 8

2 3 4

Ter=1-0.035q-0.424q -0.683q -0.379q +0.062q +0.45q +0.332q +0.03q

Tue=0.405-1.425q+1.645q -0.652q +0.155q +0.241q 1.225q +1.233q -0.376q

Tyr=0.035q+0.424q +0.6

.---------(6.8

83q +0.379

)

.-(6.

q -0.

9)

062q5 6 7 8-0.45q -0.332q -0.03 .-----------(6q .10)

 

Note that: all Poles of transfer functions (6.8), (6.9) and (6.10) are at origin, due to 

the ripple free deadbeat property. Where all of them are polynomials, meaning 

that the system will settle down after 8 sampling times as shown in Fig. (6.3)   
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Figure (6.3): Time response of vector, which was produced by Paz. 

(a) Error signal   (b) Control Signal   (c)  Response 

 

Fig. (6.3) shows error, control, and output signals where all of them are polynomial with 

order equal 8 and since there exist time delay equal 2 sampling times, they have settled 

after 10 sampling times with overshoot = 40.05%, settling time = 1 sec, U


 = 2.0443, 

E


= 2.4491, and 
2

E  =4.0466. 

 

 Decreasing control signal by vector which was produced by first approach using 

equations (5.18), (5.19), and (5.20). We obtain: 

 

V1=[ 0.3097 0.7339 1.0674]. 

 

Computing the transfer functions from output, control, and error signals versus 

reference signal using equations (5.3),(5,7), and (5.9) or using RFsys.m in 

Appendix B, we obtain: 

 
2 3 4 5 + 7 8

2 3 5 6 7 8

2 3

Ter=1-0.037q-0.44q -0.685q -0.345q +0.065q +0.431q 0.331q +0.03q

Tur=0.423-1.512q+1.796q -0.71q +0.48q -1.366q +1.268q -0.378

.-------------(6.11)

.-----------------q

Tyr=0.037q+0.44q +0.685

-

q

(6.12)

+0. 4 5 6 7 8345q -0.065q -0.431q -0.331q - ----------------(60.03q .13)

 

Note that: all Poles of transfer functions (6.11), (6.12) and (6.13) are at origin, due 

to the ripple free deadbeat property. Where all of them are polynomials, 

meaning that the system will settle down after f sampling times as shown in Fig. 

(6.4)   
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.  

Figure (6.4): Time response of vector, which was produced by first approach. 

(a) Error signal   (b) Control Signal   (c)  Response 

 

Fig. (6.4) shows error, control, and output signals where all of them are 

polynomial with order equal 8 and since there exist time delay equal 2 sampling times, 

they have settled after 10 sampling times with overshoot = 38.90%, settling time = 1 

sec, U


= 2.1861, E


 = 2.4448, and 
2

E =4.0094. 

 

 Decreasing control signal by using second approach using equations (5.25) to 

(5.35): We obtain: 

 

bestV1=[0.3082  0.6752  1.0847]. 

Computing the transfer functions from output, control, and error signals versus 

reference signal using equations (5.3),(5,7), and (5.9) or using RFsys.m in 

Appendix B, we obtain: 

 
2 3 4 5 6 7 8

2 3 4 5 6 7 8

2 3 4

Ter=1-0.035q-0.43q -0.747q -0.314q +0.135q +0.385q +0.324q +0.03q

Tur=0.405-1.347q+1.166q +0.575q -1.532q +1.552q -1.772q +1.329q -0.376q

Tyr=0.035q+0

.-----

.43

------(6.14)

.-

q +0.747q +0.31

-

4

(6.1 )

q

5

-0 5 6 7 8.135q -0.385q -0.324q -0.0 ---------------3q (6.16)

 

 

Note that: all Poles of transfer functions (6.14), (6.15) and (6.16) are at origin, due 

to the ripple free deadbeat property. Where all of them are polynomials, 

meaning that the system will settle down after f sampling times as shown in Fig. 

(6.5)   
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Figure (6.5): Time response of vector, which was produced by second approach. 

(a) Error signal   (b) Control Signal   (c)  Response 

 

 

Fig. (6.5) shows error, control, and output signals where all of them are 

polynomial with order equal 8 and since there exist time delay equal 2 sampling times, 

they have settled after 10 sampling times with overshoot = 35.79%, settling time = 1 

sec, U


 = 1.8764, E


 = 2.4491, and 
2

E  =4.0026. 

 

 

Results of step responses to the system using Paz vector, First approach, and second 

approach are summarized in Table (6.1) 

 
 

Table(6.1):  Comparison between Paz vector, first approach, second approach 

Vector Norm(u,inf) Norm(E,inf) Norm(E,2) Overshoot Settling time 

Paz vector 2.0443 2.4491 4.0466 40.05% 1  sec 

First app. 2.1861 2.4448 4.0094 38.90% 1  sec 

Second app. 1.8764 2.4491 4.0026 35.79% 1  sec 
 

 

For the same settling time, The controller design based on Second approach 

have minimum infinity norm of control signal, minimum 2-norm, and minimum 

overshoot. 

 

 

Note that: Due to time delay which equal two sampling time, all systems have settled 

down after 7 sec. 
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6.2. Magnetic ball levitation CE152 (nonlinear system) 

In this section, second order approximation of magnetic ball levitation CE152 will be 

computed after tacking two parameters –rising time and overshoot. After that, 

parameters of feedback linearization and second order approximation will be modified 

to make the coefficient of second order approximation simple and just integer numbers. 

following the procedures covered in Chapter 4, Linearization for the magnetic 

ball levitation is obtained using feedback linearization as shown in Fig. (6.6) 

 

 

Figure (6.6): Model of maglev CE152 with FBL. 

 

Finding the step response of magnetic Ball levitation with feedback linearization, 

 

Figure (6.7): Step response of CE152 with FBL. 

Overshoot = 1.65%, rising time = 0.07 sec, settling time = 0.1 sec, undershoot =10% 

Fig. (6.7) will be zoomed in to find the exact rising time and overshoot as shown in Fig. 

(6.8) 
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Figure (6.8): Zoom on to find overshoot and rising time  

(a) overshoot                                                            (b) Rising time 

 

Obtaining the second order prototype based on the given specifications as 

covered in chapter two will yield:  
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P s
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 Step response of linearized magnetic ball levitation and its approximated model 

to ensure that they are approximately the same 

 

Figure (6.9): CE152 with FBL and its second order approximation. 
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Figure (6.10): Step responses of CE152 with FBL and approximated model. 

Fig. (6.10) shows that: the step response of approximated model and linearized model 

are the same. 

 

The previous system has a very large overshoot, and deadbeat controller will 

contribute overshoot; moreover, it is not easy to deadbeat nonlinear system with very 

large overshoot; thus, another feedback linearization will be found as shown in Fig. 

(6.11) 

Obtaining the second order prototype based on the given specifications as 

covered in chapter two will yield:  
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1000
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s +80s+1000
P s 

 

 

 

Figure (6.11): CE152 with third FBL and its second order approximation. 
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Figure (6.12): Step responses of CE152 with third FBL and approximated model. 

Fig. (6.12) shows that the step response of linearized model and approximated model 

are the same and they do not have overshoot; thus, the plant 
2

1000
P(s)=

s +80s+1000
will be 

used to find deadbeat controller for linearized model of magnetic ball levitation.
 
 

 

If the first approximated model shown in Fig. (6.6) is used to find the deadbeat 

controller for magnetic ball levitation, the response will have a very large overshoot in 

real-time application; moreover, it is not easy to control the nonlinear system with very 

large overshoot.  

 

6.3. Deadbeat controller for magnetic ball levitation with feedback 

linearization 

In order to show the multi-rate system we select a sampling time for feedback 

linearization 1 ms, and another sampling time for deadbeat controller 10 ms. 

Let us consider the system
2

1000

s +80s+1000
, which has obtained in the previous section. We 

wish to track the sinusoid r (t) =3* sin (2t).  

Computing the minimum order solutions to the Diophantine equations systematically, 

following the procedure mentioned in section (5.5) we obtain 

 
N1=35.64 - 21 q-------------------------------------------------------------------------------------------(6.19)

Q1=1 + 0.622 q, -------------------------------------------------------------------------------------------(6.20)

N2=21.46 - 8.367 *q, -------------------------------------------------------------------------------------(6.21)

Dc=1 + 0.5515*q.------------------------------------------------------------------------------------------(6.22)
 

N1, N2, and Dc will be applied to the magnetic ball levitation with feedback linearization 

as shown in Fig. (6.13)  
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Figure (6.13):  CE152 with FBL with/without deadbeat controller. 
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Figure (6.14): Sinusoidal response of CE152 with FBL and with deadbeat 

controller. 

Fig.(6.15) shows the response of magnetic ball levitation with feedback linearization 

and with deadbeat controller, you can see that the response (dotted line) followed the 

reference signal (soled line) after finite time with steady state error equal zero. 

 

Figure (6.15): Sinusoidal response of CE152 with FBL. 

Fig.(6.16) shows the response of magnetic ball levitation with feedback linearization 

without deadbeat controller, you can see that the response (dotted line followed the 

reference signal (soled line)  with apparent steady state error. 

 

Figure (6.16): Sinusoidal response of CE152 with FBL and with/without deadbeat 

controller  
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Fig.(6.17) shows the response of magnetic ball levitation with feedback linearization 

without deadbeat controller and  response of magnetic ball levitation with feedback 

linearization with deadbeat controller. 

 You can see that, 

 

 the dotted line (Response of system with deadbeat Controller) can follow the solid line 

(Reference signal) better than the dashed line (Response of system without deadbeat 

Controller)  

 Settling time when using deadbeat controller is smaller than settling time without using 

deadbeat controller. 

6.4. Deadbeat controller for real-time maglev CE152 

Second order approximation of real-time magnetic ball levitation CE 152 with feedback 

linearization shown in Fig. (6.18) will be found based on specifications of step response 

of real-time linearized model as covered in chapter two will yield:  

2

1237.3
( ) --------------------------------------------------------------------------------(6.23)

55 1237.3
P s

s s


 

Computing the minimum order solutions to the Diophantine equations systematically, 

following the procedure mentioned in section (5.5) we obtain 

N1=26.05 - 15.44 q.------------------------------------------------------------------------------------(6.24)

Q1=1 + 0.6605 q.---------------------------------------------------------------------------------------(6.25)

N2=17.13 - 8.117 q. -----------------------------------------------------------------------------------(6.26)

Dc=1 + 0.602 q.-----------------------------------------------------------------------------------------(6.27)

 
After modifications the previous parameters will be 

N1=26.1502 -15.4985q.-------------------------------------------------------------------------------(6.28)

N2=5(3.4460   -1.6353q)=17.23 8.1765 .-------------------------------------------------------(q 6.29)

Dc=1+0.60266q-----------------------------------------------------------------------------------------(6.30)

 

 

Figure (6.17): FBL of real-time maglev CE152. 
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Figure (6.18): Response of real-time CE152 with FBL  

Fig. (6.19) shows that: the response of real-time magnetic ball levitation without 

deadbeat controller (dashed line) can follow reference signal (solid line) with large 

steady state error 

 

Applying N1, N2, and Dc to the real-time magnetic ball levitation CE152 as shown in 

Fig. (6.20) 
 

 

Figure (6.19): Block diagram of deadbeat controller and FBL 

 

Figure (6.20): Step response of deadbeat controller with FBL for CE152 
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Figure (6.21): Sinusoidal response of deadbeat controller with FBL for RT CE152  

Fig. (6.21) and (6.22) shows the response of real-time magnetic ball levitation CE152  

with feedback linearization and with deadbeat controller, you can see that the response 

(dashed line) followed the reference signal (soled line) after finite time with steady state 

error equal zero. 

6.5. VHDL code of deadbeat controller for real-time magnetic ball 

levitation CE152 

 In this section, VHDL code of deadbeat controller for real-time magnetic ball 

levitation will be simulated and compared with original blocks which has already 

deadbeat the system, and the approximated model which take into consideration  the 

quantization error, number of input bits, and number of output bits. 

 

 DSP design tool from Xilinx will be used since this tool enables the use of the 

MathWorks SIMULINK environment for FPGA design.  

 

 Using DSP design tool to generate VHDL code is not a good technique for multi 

blocks model; since, large VHDL code will be generated. Therefore, VHDL code will 

be written for deadbeat controller [28], compiled using ISE Design Suite 10.1, and 

simulated using Xilinx Black Box to upload the VHDL of deadbeat controller for 

magnetic ball levitation with feedback linearization. 

6.6. The Xilinx DSP Block Set 

 Over 90 DSP building blocks are provided in the Xilinx DSP blockset for 

SIMULINK. These blocks include the common DSP building blocks such as adders, 

multipliers and registers. In addition, the DSP tool included a set of complex DSP 

building blocks such as forward error correction blocks, FFTs, filters and memories 

[29]. Four blocks will be used in my project; these blocks will be described briefly: 
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 Gateway in and Gateway out 

“Gateway In” and “Gateway Out” define the boundary of the FPGA from the 

SIMULINK simulation model. The Gateway In block converts the floating-point 

input to fixed-point. The Gateway out converts the FPGA outputs back to double 

precision block. Double-click on the block to bring up the properties editor. 

 

Properties for gateway in: 

Signed 2‟s compliment,  

Sample period = .001,  

Number of bits = 8,  

Binary point =0 

 

 Black box: 

Black box allows VHDL code to be imported into SIMULINK and co-simulated 

with either ModelSim or Xilinx ISE Simulator. VHDL code of deadbeat 

controller will be imported to this block and simulated. 

Properties of Black Box:  

Simulation mode: ISE simulator 

 

 System generator 

Once the design is completed, hardware implementation files can be generated 

using the Generate button available on the System Generator properties editor 

and this block can be used to simulate the already written hardware 

implementation file.  

 

Properties of system generator: 

Compilation:  HDL netlist  

Part: SPARTAN3A AND SPARTAN3AN   XC3s700an -4 fg484 

Hardware description language: HDL 

FPGA clock period (ns): 20 

Clock pin location: E12 

SIMULINK system Period(sec): .001 

6.7. Obstacles and solutions 

Many obstacles have been encountered and solved during writing and simulating VHDL 

code. Some of these obstacles will be discussed here: 

Any names for input and output ports can be used except the reserved names for 

VHDL commands. Thus, I chose „Clock‟,‟CLK50‟, and many other names for FPGA 

clock. It‟s ok when you synthesize this code using ISE Design Suite, and when you 

simulate the VHDL code using ModelSim or Xilinx ISE Simulator, but it‟s not ok when 

you use DSP design tool on SIMULINK environment, since, you can‟t build a square 

wave for clock with Thigh or Tlow smaller than sampling time. After studying some 

VHDL code that simulated using DSP design tool on SIMULINK environment, I found 

that you should define two ports „clk‟ for clock and „ce‟ for counter enable, then these 
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ports will be hidden and the DSP design tool will take the clock period from FPGA 

clock period property in Properties of system generator. 

Any computational process will be registered in signal; Thus, number of bits for 

this signal should be determined depending on number of bits  for coefficients, number 

of multiplication and summation terms, 1 bit for negative and positive sign, and one 

margin bit as mentioned in section (5.9). Just summation of equally number of bits in 

VHDL code can be done “z(n bits) = x(n bits) + y(n bits)”, the result number of bits for 

multiplying terms equal summation of number of bits for each term “ x(n1 bits)*y(n2 

bits)*z(n3 bits)=w((n1+ n1+ n1) bits). 

6.8. Designing Steps: 

 Simulating VHDL code for constant input signal and comparing the results 

appeared on Display screens with original deadbeat controller will be done, then manual 

switch will be used to convert from constant input to sinusoid form with offset then 

simulating and comparing the results on different scopes will be done. 

 

 VHDL code for deadbeat controller will be written using equations (5.77), (5.79),(5.81), 

and (5.83). 

 VHDL code will be synthesized using ISE Design Suite . 

 DSP design tool from Xilinx will be used to build the required block as shown in Fig. 

(6.26) to simulate VHDL code and compare it with original SIMULINK model for 

deadbeat controller. 

 If the simulated results are not ok, the first two steps will be reused. 

6.9. ADC 

Analog to digital converter as shown in Fig. (6.23) will be used to convert unlimited 

number of levels from input signal to limited number of levels. Eight bits will be used; 

one of them for negative and positive sign and seven bits for output level. 

Peak value of input signal =5 Volts; thus, saturation will be used to eliminate any input 

larger than 5 volts. 

A/D output gain will be used to convert the peak of input signal from 5 to 127 

Rounding function will be used to convert the infinity number of levels to limited 

number of levels by removing the floating point. 

 

Figure (6.22): Block diagram of analog to digital converter 
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6.10. Approximated model of deadbeat controller 

   Comparing original deadbeat controller shown in Fig. (6.24) which uses 

unlimited number of levels for input signal and real number for coefficients with VHDL 

code that uses limited number of levels for input signal and just natural number for 

coefficients is not efficient. Thus, an approximated model for deadbeat controller will 

be made as shown in Fig. (6.25) using analog to digital converter shown in Fig. (6.23) 

and deadbeat controller shown in Fig. (5.11) 

 

 

Figure (6.23): Block diagram of original deadbeat controller 

 

Figure (6.24): Block diagram of approximated model deadbeat controller 

6.11. Simulation of VHDL code 

Fig. (6.26) shows black box that imported VHDL code for deadbeat controller called “ 

VHDL-Code Dead-Beat Controller”, subsystem contains deadbeat controller shown in 

Fig. (6.24) which called “DB”, and subsystem contains approximated model of 

deadbeat controller shown in Fig. (6.25) 
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Figure (6.25): Block diagram of subsystem Approx. DB , DB, Black box for VHDL   

Fig. (6.26) shows that the output of VHDL code almost equal the output of 

approximated model; thus, the VHDL code programmed successfully. 

 

 

Figure (6.26): Time response of VHDL code versus original controller 

 

  Fig. (6.27) shows the response of VHDL code for deadbeat controller 

(dotted line) and step response of original deadbeat controller (solid line). 
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Figure (6.27): Time response original controller versus its approximated model 

Fig. (6.28) shows the response of an approximated model of deadbeat controller 

(dotted line) and step response of original deadbeat controller (solid line). 

 

 

Figure (6.28): Time response of VHDL code versus approximated model. 

Fig. (6.29) shows the response of an approximated model of deadbeat controller 

(dotted line) and step response of VHDL code for deadbeat controller (solid line). 

 

 

Note:  

1)  The response of VHDL code exactly equals the response of approximated model, 

which means: deadbeat Controller is programmed successfully. 

 

2) The response of VHDL and approximated model are not exactly equal the response 

of original model of deadbeat Controller, since the function of deadbeat controller is 

to follow the signal as fast as possible which make an overshoot that directly 

proportional to the difference between present and wanted values which means it‟s 

directly proportional to the quantization error, So to decrease this chattering we 

need to use extra number of bits for input signal. 
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CHAPTER 7 CONCLUSION 

A new design methodology for ripple-free deadbeat control of nonlinear systems 
in discrete-time was proposed. This new control methodology combined two ripple-free 
deadbeat controllers to control nonlinear systems. The new control methodology 
guaranteed the robustness and handled multi-rate systems. The results shown that, the 
response of nonlinear system tracked the reference signal with zero steady state after 
very small rising time. This thesis minimized the settling time by using second order 
linear model to approximate the nonlinear system.  

 
The settling time depends on the length of three polynomials N1, N2, and Dc. The 

length of these polynomials depends on the degree of numerator of plant, denominator  
of plant, and denominator  of reference signal; thus, when the order of plant for linear 
systems and order of  linearized plant for nonlinear systems greater than two, the second 
order approximation that was applied depended on the two dominant poles. 
This thesis proposed a hybrid two degree of freedom controller for the nonlinear 
optimization problem addressing performance and robustness specifications, utilizing 
the parameters of Diophantine equation to build a robust multi-rate ripple-free deadbeat 
control. A combination between the concept of multi-rate and robust single was 
proposed.  

The proposed controller was applied using SIMULINK model of magnetic ball 
levitation CE 152 as a case study for nonlinear systems, simulation results shown that 
the controller performed fine with simulated plant but gave harmonic signal. 

The proposed controller was also applied on real-time magnetic ball levitation 
CE 152 using real-time toolbox in MATLAB environment, the controller worked fine 
with real-time plant but still gave harmonic signal. 

 
      Multi-rate ripple-free deadbeat control problem was evaluated by two steps: full 

state feedback which depended on (Time-domain approach) and Diophantine equations 
which depended on (Polynomial approach).  State and output feedbacks were used to 
linearize and stabilize the nonlinear system and to make the response of the nonlinear 
system closely track the reference signal. The Diophantine equations which depend on 
internal model principle were utilized and applied to the linearized and stabilized 
nonlinear system to make the response of the system exactly equal the reference signal 
and provide some robustness. 

VHDL code for deadbeat control for magnetic ball levitation with feedback 
linearization was written and simulated using Xilinx toolbox and compared with the 
approximated model of SIMULINK original blocks. 
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Simulation and real-time results showed that the output signal exactly tracked 
the input sinusoidal signal in short settling time. The time domain specification for the 
output signal, control signal, and error signal were computed and satisfied the 
requirement and constraints. A time delay was also presented with simulation and was 
solved by using deadbeat controller based on solving Diophantine equation parameters.  

 
Future research can used to deadbeat the nonlinear system using another 

linearization technique. Moreover, the effect of the noise and output disturbances on the 
system can be studied; the effect of changing working points, changing the sampling 
time, and changing the frequency of input signal can be also studied.  
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Appendix A 

VHDL code for deadbeat controller 

 
  

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.STD_LOGIC_ARITH.ALL; 

use IEEE.STD_LOGIC_SIGNED.ALL; -- change unsigned to signed 

----------------------- Define input/output ports-------------------- 

-- The name of port for FPGA's internal clock should be 'clk' to be 

used in simulation 

-- You should define ce 'clock enable'. 

entity DeadBeatXilinx is 

Port (clk    : in  STD_LOGIC; 

ce      : in  STD_LOGIC; 

FG      : in  STD_LOGIC_VECTOR (7 downto 0); 

sen_X   : in  STD_LOGIC_VECTOR (7 downto 0); 

XDCsign : out STD_LOGIC; 

XDC     : out STD_LOGIC_VECTOR (7 downto 0); 

Y       : out STD_LOGIC_VECTOR (7 downto 0) 

); 

end DeadBeatXilinx; 

architecture Behavioral of DeadBeatXilinx is 

----------------------------Define signals----------------------------- 

signal sen_X_buffer    : STD_LOGIC_VECTOR (7  downto 0):=(others=>'0'); 

signal sen_X1_buffer   : STD_LOGIC_VECTOR (7  downto 0):=(others=>'0'); 

signal FG_buffer       : STD_LOGIC_VECTOR (7  downto 0):=(others=>'0'); 

signal FG1_buffer      : STD_LOGIC_VECTOR (7  downto 0):=(others=>'0'); 

signal Y_buffer        : STD_LOGIC_VECTOR (7  downto 0):=(others=>'0'); 

signal counter         : STD_LOGIC_VECTOR (4  downto 0):=(others=>'0'); 

signal counterCLK50    : STD_LOGIC_VECTOR (17 downto 0):=(others=>'0'); 

signal XDC_buffer      : STD_LOGIC_VECTOR (20 downto 0):=(others=>'0'); 

signal XDC_buffer2     : STD_LOGIC_VECTOR (8  downto 0):=(others=>'0'); 

signal XDC_buffer3     : STD_LOGIC_VECTOR (20 downto 0):=(others=>'0'); 

signal XDC_buffer_sign : STD_LOGIC_VECTOR (8  downto 0):=(others=>'0'); 

signal YDC_buffer      : STD_LOGIC_VECTOR (20 downto 0):=(others=>'0'); 

signal YDC1_buffer     : STD_LOGIC_VECTOR (7  downto 0):=(others=>'0'); 

--------------------------Define constants----------------------------- 

-- the binary number will be -ve when it's decimal larger than 5 

-- 5*127*128/5=16256="011111110000000000000" 

-- 

begin 

---------------------------- Start Process----------------------------- 

process (clk,ce,FG,sen_X) 

-------------------------- Define constants---------------------------- 

constant a3347 : STD_LOGIC_VECTOR (12 downto 0):="0110100010011"; 

constant a1984 : STD_LOGIC_VECTOR (12 downto 0):="0011111000000"; 

constant a441  : STD_LOGIC_VECTOR (12 downto 0):="0000110111001"; 

constant a209  : STD_LOGIC_VECTOR (12 downto 0):="0000011010001"; 

constant a128  : STD_LOGIC_VECTOR (12 downto 0):="0000010000000"; 

constant a77   : STD_LOGIC_VECTOR (12 downto 0):="0000001001101"; 
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begin 

 if (ce='1' and rising_edge(clk)) then 

-- CLK50 = 50 MHz=> to find 1ms sampling time we need 

-- 1m*50M=50,000 samples, 50000="001100001101010000" 

-- comment the following three lines for simulation and don't forget 

to comment last 'end if' 

-- counterCLK50<=counterCLK50+1; 

-- if counterCLK50 = "001100001101010000" then -- 50,000 cloks => 1 

ms 

-- counterCLK50<=(others=>'0'); 

sen_X_buffer<=sen_X; 

FG_buffer<=FG; 

counter<=counter+1; 

if counter="01010" then 

counter<=(others=>'0'); 

XDC_buffer<=a3347*FG_buffer-a1984*FG1_buffer-

a441*sen_X_buffer+a209*sen_X1_buffer; 

XDC_buffer3<=XDC_buffer; 

sen_X1_buffer<=sen_X_buffer; 

FG1_buffer<=FG_buffer; 

end if; 

if XDC_buffer(14)='1' then 

XDC_buffer2(7 downto 0)<=XDC_buffer(14 downto 7); 

XDC_buffer_sign<="100000000"-XDC_buffer2; 

XDC<=XDC_buffer_sign(7 downto 0); 

XDCsign<='1'; 

Y_buffer<=(others=>'0'); 

YDC1_buffer<=(others=>'0'); 

else 

XDC<=XDC_buffer(14 downto 7); 

XDCsign<='0'; 

YDC_buffer<=XDC_buffer3-a77*YDC1_buffer; 

-- Apply Saturation ( 2*127/5=50.8 ~= 51 = "00110011") 

if XDC_buffer3(14)='1' then 

Y_buffer<=(others=>'0'); 

YDC1_buffer<=(others=>'0'); 

elsif YDC_buffer(14 downto 7)>"00110011" then 

Y_buffer<="00110011"; 

YDC1_buffer<="00110011"; 

else 

Y_buffer<=YDC_buffer(14 downto 7); 

YDC1_buffer<=YDC_buffer(14 downto 7); 

end if; 

if Y_buffer(7)='1' then 

Y<=(others=>'0'); 

else 

Y<=Y_buffer; 

end if; 

end if; 

end if; 

--end if; 

end process; 

end Behavioral; 
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Appendix B 

 MATLAB Code « Main code » 

 

This code calls many functions, all of them is placed in Thesis CD 

clear all; close all; clc 
T=.0833;                               % Sampling time  
td=.13;                                % Time delay   
Amplitude=3;                           % Amplitude of Reference Signal 
Omega=2;                               % radian freq. of Reference Signal 
PhaseRad=pi/2;                         % phase shift in radian 
Tfinal=10;                             % final simulation time 
Tfinal=round(Tfinal/T)*T; 
Mc=tf(100,[1 0 4]);                    % Model Filter 
L=3;                                   % Length of vector V1 
Gc=tf(200,[1 -2 2],'ioDelay',td); 
%-------------------------------------------------------------------------- 
P_q=SQ(Mc*Gc,T);                       % plant 
[nump denp]=tfdata(P_q,'v'); 
denp=removeZeros(denp); 
OrderP=length(denp)-1; 
%-------------------------------------------------------------------------- 
%                          Reference signal 
t=sym('t'); Rt=Amplitude*sin(Omega*t);  Rc=laplace(Rt);  Rc=sym2s(Rc);                             
R_q=SQ(Rc,T);                           % Reference signal in q-domain 
%-------------------------------------------------------------------------- 
%  compute minimum order of N1Q1 and N2Dc then find N1, Q1, N2, and Dc 
[N1Q1_Order N2Dc_Order]=Mini_Order(P_q,R_q); 
[N1_q Q1_q N2_q Dc_q]=N1Q1N2DC(R_q,P_q,N1Q1_Order,N2Dc_Order); 
N1_q_NC=N1_q; 
N2_q_NC=N2_q; 
Q1_q_NC=Q1_q; 
Dc_q_NC=Dc_q; 
%-------------------------------------------------------------------------- 
%        check if the Diophantine equations are OK or  not 
[DC1 DC2]=DioCheck(N1_q,N2_q,Q1_q,Dc_q,R_q,P_q); 
%-------------------------------------------------------------------------- 
%                    construct the system 
[sys Ter Tur Tyr]=RFsys(N1_q,N2_q,Dc_q,P_q); 
%-------------------------------------------------------------------------- 
%                   Generate The Time Domain input signal 
[u,t] =Generate_Signal('sin',Amplitude,Omega,PhaseRad,Tfinal,T); 
%-------------------------------------------------------------------------- 
%----------------------------Minimzing Control signal 
[x N1new]=performance2(N1_q,P_q,R_q,Gc,L); 
N1_q=tf(N1new,1,T,'variable','q'); 
[sys2 Ter2 Tur2 Tyr2]=RFsys(N1_q,N2_q,Dc_q,P_q); 
C=lsim(Tyr2,u,t); 
CC=norm(C,inf); 
C=lsim(Tur2,u,t); 
Normx=norm(C,inf); 
C=lsim(Ter2,u,t); 
Errorx=norm(C(OrderP-1:end),inf); 
 %--------------------------Minimizing control signal by my FIRST method 
[V1  N1_new]=findV1(N1_q_NC,R_q,L); 
[sys3 Ter3 Tur3 Tyr3]=RFsys(N1_new,N2_q,Dc_q,P_q); 
%--------------------------Minimizing control signal by my Combined method 
[bestV1 N1_new]=bestV1(N1_q_NC,N2_q,Dc_q,P_q,R_q,x,V1,NormV1,Normx,u,t) 
[sys4 Ter4 Tur4 Tyr4]=RFsys(N1_new,N2_q,Dc_q,P_q); 
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Best vector to minimize control signal 

 

 

function [VVV 

N1_new]=bestV1(N1_q_NC,N2_q,Dc_q,P_q,R_q,x,V1,NormV1,Normx,u,t) 
% This function has been built by Mohammed T. A. Elamassie 
% This function will find new vector istead of V1 to minimize 

the control 
% signla, this vector is compination vector between vector x 

which found by 
% quadratic approach and V1 which I found by my method 
dif=0; 
L=length(x); 
[numN1 denN1 T]=tfdata(N1_q_NC,'v'); 
numN1=numN1(end:-1:1); 
[numr denr]=tfdata(R_q,'v'); 
denr=denr(end:-1:1); 
N1_sym=poly2sym(numN1); 
Dr_sym=poly2sym(denr); 
KK=0; 
    xx=x; 
    previous_Norm=min(NormV1,Normx); 

     

for i=1:L 
    x(i)=V1(i); 
    V1_sym=poly2sym(x); 
    N1_new=sym2poly(collect(N1_sym-Dr_sym*V1_sym)); 
    N1_new=N1_new(end:-1:1); 
    N1_new=tf(N1_new,1,T,'variable','q'); 
    [sys3 Ter3 Tur3 Tyr3]=RFsys(N1_new,N2_q,Dc_q,P_q); 
    C=lsim(Tur3,u,t); 
    NormV1=norm(C,inf); 
    if NormV1<previous_Norm 
        KK=KK+1; 
        VVV=x; 
        previous_Norm=NormV1; 
    end 
    x=xx; 
end 
if KK==0 
    if NormV1<Normx 
     VVV=V1; 
    else 
     VVV=x; 
    end 
end 
if KK>0 
    dif=x-VVV; 
end 
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if sum(abs(dif))~=0 
    for jj=1:20 
        VVV=VVV-dif; 
        V1_sym=poly2sym(VVV); 
        N1_new=sym2poly(collect(N1_sym-Dr_sym*V1_sym)); 
        N1_new=N1_new(end:-1:1); 
        N1_new=tf(N1_new,1,T,'variable','q'); 
        [sys3 Ter3 Tur3 Tyr3]=RFsys(N1_new,N2_q,Dc_q,P_q); 
        C=lsim(Tur3,u,t); 
        NormV1=norm(C,inf); 
        if NormV1<previous_Norm     
           previous_Norm=NormV1; 
        else 
            VVV=VVV+dif; 
            break; 
        end 
    end 
end 
 V1_sym=poly2sym(VVV); 
N1_new=sym2poly(collect(N1_sym-Dr_sym*V1_sym)); 
N1_new=N1_new(end:-1:1); 
N1_new=tf(N1_new,1,T,'variable','q'); 
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Connecting subsystems together 

 

 

 

 

 

function [sys Ter Tur Tyr]=RFsys(N1,N2,Dc,P) 
% this function has been built by mohammed T. A. Elamassie 
% this function will connect the subsystems to construct the following 
% system  

  
%                                          +-------------------> U   O.P #2 
%                                          | 
%                RN1     E1              U | 
%   R---->[ N1 ]----->+O------>[1/Dc ]--------[ P ]-----+------> y   O.P #3 
%      |               -                                |    |        
%      |               |YN2                             |    |        
%      |               +------------[ N2 ]<-------------+    | 
%      |                                                     - 
%      +--------------------------------------------------->+O-->E   O.P #1 
D=1/Dc; 
%Defining input and output for each block 
N1.InputName='R';  N1.OutputName='RN1';  
D.InputName='E1';  D.OutputName='U'; 
P.InputName='U';   P.OutputName='Y'; 
N2.InputName='Y';  N2.OutputName='YN2'; 

  
% Defining summation as block,its inputs, and its output 
Sum1 = tf([1,-1],'InputName',{'RN1','YN2'},'OutputName','E1'); 
Sum2 = tf([1,-1],'InputName',{'R','Y'},'OutputName','E'); 
% Construct the system 
sys = connect(N1,N2,P,D,Sum1,Sum2,'R',{'E','U','Y'}); 

  
[num den T]=tfdata(sys,'v'); 

  
% Transfer function between Error and Reference 
nume=round(num{1}*1000)/1000; 
dene=round(den{1}*1000)/1000; 
Ter=tf(nume,dene,T,'variable','z'); 

  
% Transfer function between control signal and reference 
numu=round(num{2}*1000)/1000; 
denu=round(den{2}*1000)/1000; 
Tur=tf(numu,denu,T,'variable','z'); 

  
% Transfer function between output and reference 
numr=round(num{3}*1000)/1000; 
denr=round(den{3}*1000)/1000; 
Tyr=tf(numr,denr,T,'variable','z'); 
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Appendix C  

Graphical User Interface (GUI) 

Evaluate parameters of Diohantine equation for a given system, minimize infinity 

norm of control signal, and plot the signals  
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Mass spring system over moving belt as an example of following sinusoid signal 
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Appendix D  

Used Software and Hard ware 

 

Software programs 

 
1- Windows vista 

 

2- MATLAB R2007b (matrix laboratory) is a numerical computing environment and 

fourth-generation programming language. Developed by MathWorks, MATLAB allows 

matrix manipulations, plotting of functions and data, implementation of algorithms, 

creation of user interfaces, and interfacing with programs written in other languages, 

including C, C++, and FORTRAN. 

 

I used this program to simulate my works and to build Graphical User Interface 

 

3- SIMULINK, developed by MathWorks, is a commercial tool for modeling, simulating 

and analyzing multi-domain dynamic systems. Its primary interface is a graphical block 

diagramming tool and a customizable set of block libraries. It offers tight integration 

with the rest of the MATLAB environment and can either drive MATLAB or be 

scripted from it. SIMULINK is widely used in control theory and digital signal 

processing for multi-domain simulation and design. 

 

I used this tool to simulate my works and to run the Real-time magnetic ball levitation. 

 

4- WebPACK_SFD_10.1 (Xilinx  ISE 10.1) 

Xilinx ISE is a software tool produced by Xilinx for synthesis and analysis of HDL 

designs, which enables the developer to synthesize ("compile") their designs, perform 

timing analysis, examine RTL diagrams, simulate a design's reaction to different 

stimuli, and configure the target device with the programmer. The Web Edition is a free 

version of Xilinx ISE that can be freely downloaded or delivered by mail. This edition 

provides synthesis and programming for a limited number of Xilinx devices.  

I used this software computer program to synthesize and analyze The VHDL Code of 

Deed-Beat control for Real-Time Magnetic Ball Levitation.  

 

5- Dsptools_SFD.tar (version 10.1) developed by Xilinx, is a tool for modeling, simulating 

and analyzing systems used in SIMULINK environment. 

I used this software computer program to simulate The VHDL Code of Deed-Beat 

control for Real-Time Magnetic Ball Levitation.  

 

Note:  Dsptools_SFD.tar (version 10.1) is compatible with MATLAB R2007b  

 

 

 

http://en.wikipedia.org/wiki/Numerical_analysis
http://en.wikipedia.org/wiki/Hardware_description_language


www.manaraa.com

 

94 

 

 

Hardware 

 
1- Personal Computer 

2- Magnetic Ball Levitation CE 152.  

3- Multifunction Data Acquisition Card MF624. 

4- Power supply. 




