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ABSTRACT

Deadbeat control was investigated extensively in the last couple of decades, but a need
still exists to offer a better methodology for both performance and robustness for linear and
nonlinear systems. This research proposes a new design methodology for ripple-free deadbeat
control for nonlinear systems in discrete-time. The proposed method combines two ripple-free
deadbeat control laws. The new controller guarantees robustness and handles multi-rate systems.
Multi-rate digital control is used when processing time is greater than controller updating time;
thus, processing time can be decreased by increasing at least one of the following: state feedback
sampling time; output feedback-sampling time, input sampling time, and/or decreasing
controller-updating rate for some processes; therefore, the sampling time is not unique for the
whole system. The new controller is applied on magnetic ball levitation CE 152 as a case study
for nonlinear systems.

The deadbeat tracking formulation is based on a polynomial approach and a time domain
approach; thus, the proposed method combines two deadbeat control laws. In this thesis, the time
domain approach is used to ensure the local behavior of the nonlinear system, while the
polynomial approach is used to provide deadbeat control to the linearized nonlinear system.
Nonlinear system is linearized using feedback linearization, A second order linear model is used
to approximate the nonlinear system based on two dominant poles; thus, the settling time which
depend on the minimum order solution of Diophantine equations is minimized. Xilinx
MATLAB toolbox is used to implement the new controller on real-time magnetic ball levitation.
Sub controller, which depends on polynomial approach, is written in VHDL code, simulated and
compared with original and approximated SIMULINK model using Xilinx DSP toolbox.

Simulation and real-time results shows that the output signal exactly tracks the input
sinusoidal signal in short settling time. The time domain specification for the output signal,
control signal, and error signal are computed and satisfied the requirement and constraints. A
time delay is also presented and included in the model and the solution is based on two
Diophantine equations that form the ripple-free deadbeat.
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CHAPTER 1 INTRODUCTION

1.1. General Introduction

Control systems have played an increasingly important role in the development
and advancement of modern civilization and technology [1]. Practically some types of
control systems affect every aspect of our day-to-day activities. Control systems are
found in abundance in all sectors of industry, such as quality control of manufactured
products, automatic assembly line, machine-tool control, computer control and many
others [2]. Today, almost all controllers are computer implemented meaning digital
control [3]. Deadbeat controller is a type of digital controllers, which offers the fastest
settling time. Therefore, deadbeat controller ensures that the error sequence vanishes at
the sampling instants after a finite time. Plants and processes are typically nonlinear; the
most typical nonlinearity is saturation. Since, computer implemented controllers are a
standard configuration, a theory for discrete-time nonlinear systems is very important in
particular for control design purposes. Indeed, we cannot use linear control theory in
cases where: large dynamic range of process variables is possible, multiple operating
points are required, the process is operating close to its limits, small actuators cause
saturation, etc [4]. A control system is a device or set of devices —called the controller-
that manage the behavior of other devices — called the plant-.[5].

1.2. Closed-loop control system:

In a closed-loop control system, a sensor monitors the output and feeds the data
to a computer, which continuously adjusts the control output (system input) as
necessary to minimize the error as shown in Fig. (1.1). (That is, to maintain the desired
speed, desired position, and so on). Feedback allows the controller to dynamically
compensate the disturbances. An ideal feedback control system cancels out all errors,
effectively mitigating the effects of any forces that might or might not arise during
operation and producing a response in the system that perfectly matches the user's
wishes.

E_rror System System
Referenc __Signal input Output
Controller System

v

A 4

Measured output

A

Sensor

Figure (1.1): Closed loop control system
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In reality, this cannot be achieved due to measurement of errors in the sensors,
delays in the controller, and imperfections in the control input. The concept of the
feedback loop: the sensed value is subtracted from the desired value to create the error
signal, which is handled by the controller to produce the control signal, which can
achieve the desired response [6].

1.3. Digital Controller:

Digital control is a branch of control theory that uses digital computers to act as
system controllers. Depending on the requirements, a digital control system can be a
microcontroller, DSP kit, FPGA kit, standard desktop computer and so on. Since a
digital computer is a discrete system, the Laplace transform is replaced with the Z-
transform. In addition, since a digital computer has finite precision, extra care is needed
to ensure that the error in coefficients, A/D conversion, D/A conversion, etc. are not
producing undesired or unplanned effects. For any digital controller, the output is a
weighted sum of current and past input samples, as well as past output samples, this can
be implemented by storing relevant values in any digital controller [3].

1.3.1. Features of Digital Controllers

e Inexpensive

o Flexible: easy to configure and reconfigure through software

e Scalable: programs can be scaled to the limits of the storage space without extra
cost

o Adaptable: parameters of the program can be changed

e Static operation: digital computers are much less prone to environmental
conditions than capacitors, inductors, etc[7].

1.3.2. Digital controller requires:

e A/D converter: converts analog inputs to machine readable format (digital)
o DJ/A converter: converts digital output to a form that can be input to a plant
o Software program: that relates the outputs to the inputs [3]
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1.4. Previous Studies:

Multi-rate ripple-free deadbeat controller for nonlinear system can’t see the light

without the following researches:

e H. Elaydi and R. A. PAZ, (1998), proposed optimal ripple-free deadbeat
controllers for systems with time delays. Matrix parameterization of the
Diophantine equation approach was used to solve this problem. Based on this
parameterization, LMI conditions were provided for optimal or constrained
controllers with design quantities such as overshoot, undershoot, control

amplitude, “slew rate” as well as for norm bounds such as ¢ ,{,and(_ [8].

However, they treated linear systems only

e Dragan Ne'si'c (1996), proposed ripple-free deadbeat control for polynomial
systems of nonlinear input-output polynomial model. The proposed method
dealt with multi-input multi-output systems. Mathematical tools, such as
algebraic geometry, real algebraic geometry, symbolic computation and convex
analysis were exploited. A number of analytic results were obtained utilizing
computationally feasible controllability tests and design methodologies [4].
However, he didn’t treat multi-rate problems and didn’t use general rule such as
Diophantine equations.

e L. Jetto and S. Longhi, (1999), proposed parameterized solution of the deadbeat
ripple-free control problem for multi-rate sampled data systems. This paper was
provided a parameterization of all causal feedback periodic controllers which
guaranteed the deadbeat ripple-free behavior of the output of a linear time-
invariant plant with a general multi-rate control scheme [9]. However, they
treated multi-rate problems for linear systems only.

e H. Ito, (2001), improved performance of deadbeat servomechanism by means of
multi-rate input control. A state-space approach to deadbeat servomechanism
design was proposed using multi-rate input control. Multi-rate input mechanism
yielded shorter settling time than single-rate control using the same frequency of
sampling. However, multi-rate control often exhibited inter-sample ripple.
Furthermore, the paper proposed a design method for multi-rate ripple-free
deadbeat control which guaranteed robustness against continuous-time model
uncertainty and disturbance [10]. However, the paper still didn’t deal with
nonlinear systems.
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e R. A. PAZ, (2006), proposed a ripple free tracking with robustness. A hybrid
two-degree-of freedom (2DOF) controller for the fixed-order constrained
optimization problem addressing performance and robustness specifications was
shown. The controller was given in terms of the solution of two Diophantine

equations [11]. However, the nonlinear plants were not delt with.

e M. E. Salgado and D. A. Oyarzun, (2007), presented two objective optimal
multivariable ripple free deadbeat controls. A simple parameterization of all
stabilizing ripple-free deadbeat controller of a given order was given. The free
parameter was then optimized in the sense that a quadratic index was kept
minimal [12].However, the nonlinear and multi-rate were not approached.

e Al Batsh (2009), proposed multi-rate ripple-free deadbeat control. Two degree
of freedom controller for the fixed-order constrained optimization problem
addressing performance specifications utilizing the parameters of Diophantine
equation to build a multi-rate ripple-free deadbeat control was presented. A
combination between the concept of multi-rate and robust single rate was
utilized. A time delay was also presented in simulation and was solved by using
deadbeat controller based on solving Diophantine equation parameters [13].
However, he didn’t treat nonlinear on multi-rate systems.

1.5. Thesis Contribution:

This thesis presents methodologies for designing internally stabilizing ripple-free
deadbeat controllers to solve the tracking of an arbitrary reference signal and the
attenuation of general disturbances for nonlinear systems. The deadbeat tracking
formulation is based on Paz’s results [11] and H. Ito’s result [10], thus; the proposed
controller combines two deadbeat controllers for linear systems to deadbeat nonlinear
systems; thus, the new controller can be divided into two sub controllers: one of them
will use polynomial approach and the other will use time domain approach.

1.6. Outline of the Thesis

This thesis is organized as follow: The second chapter introduces the forthcoming
chapters and summarizes them, the third chapter presents the magnetic ball levitation
CE152, the fourth chapter presents the feedback linearization of magnetic ball levitation
CE152, the fifth chapter shows the methodology and approach, the sixth chapter shows
simulations and results, and the final chapter concludes this thesis.
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CHAPTER 2 BACKGROUND

This chapter gives background for the forthcoming chapters. Previous studies
which mentioned in page 3 treated single-rate ripple-free deadbeat controller for linear
systems, single rate ripple-free deadbeat controller for nonlinear systems without using
general rule by dealing with polynomial systems of each nonlinear plant, and multi-rate
ripple-free deadbeat controller for linear systems. Therefore, the previous studies did
not deal with multi rate ripple-free deadbeat controller for nonlinear system; thus, 1 will
start my work with Paz’s result and apply Diophantine equations to the linearized plant
using feedback linearization. Therefore, this chapter will cover briefly the multi-rate
digital control, deadbeat controller for linear systems, nonlinear systems, feedback
linearization, designing steps to deadbeat magnetic ball levitation CE152, and the
necessary assumptions.

2.1. Multi-rate digital control

Multi-rate digital control systems are those, which use more than one sampling rate as
shown in Fig.(2.1). If the controller updating rate fc=1/Tc is the same as the state
feedback sampling rate 1/T,, output feedback sampling rate 1/T3, and input sampling
rate 1/T1, then it’s a single-rate system.

Controller "' Hold > Plant >
R()—~ v T, . x(t)
Tl = 'T2
) S y(@®
I3

Figure (2.1): Multi-rate control system

2.2. Reasons for using multi-rate digital control

There are many practical reasons why multi-rate digital control systems might be used.
For example:

e Required sampling rate is greater than the frequency of sampler;
therefore; multi-rate technique can be used to map each input sample to
K samples (i.e. increase the controller updating rate)
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e Processing time is greater than controller updating time, therefore; we
should decrease number of processes by increasing at least one of the
following: state feedback sampling time; output feedback-sampling time,
input sampling time, and/or decreasing controller-updating rate for some
processes.

2.3. Multi-rate ripple-free deadbeat control for nonlinear systems

This approach here combines results developed on multi-rate ripple-free deadbeat
[10], robust ripple-free control [11], and nonlinear control theory [19].

2.3.1. Multi-rate input controller for linear system (Hiroshi approach):

Deadbeat control can be achieved using state and output feedback with integral
control. The two mappings { and & shown in Fig.(2.2) are linear operators maps each
input sample to K samples; thus, the sampling rate will increase to N*K samples/sec
instead of N samples/sec.

This structure will yield shorter settling time than single rate with sampling rate
equal k samples/sec, but longer settling time than single rate with sampling rate equal
N*K samples/ sec.

Ripples will appear between original samples due to mapped samples which do
not match the original signal [11].

Therefore, this technique is good when you need sampling rate greater than the
frequency of sampler since multi-rate controllers can achieve the required settling time
with less frequent sampling of measurement.

e[k_] T/k T

w 7! —tCD—'HcldH Plant »y(t)

yi| | x[k]

£ e e
I 'k T

-

T

Y
Fa |

Figure (2.2): Multi-rate control for deadbeat servomechanism
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2.3.2. Ripple-free deadbeat controller (R. PAZ approach)

A deadbeat controller design based on the internal model principle and ripple-
free deadbeat design was presented by Paz; this technique gave a very good
performance and robustness with very small settling time, but with a very high
control signal.

Since, evaluating the three polynomials N;, N,, and D, shown in Fig.(2.3)
depend on the numerator and denominator of plant as well as denominator of
reference signal, it can’t be applied for nonlinear systems.

R(g) + 1 Ulg) ¥ig)
—| Ni(q) D > P(g) >
g

Ny(q) |-

Figure (2.3): Ripple-free deadbeat design based on internal model

2.3.3. State and output feedbacks:

The basic philosophy of feedback linearization is to cancel the nonlinear terms
of the system. Therefore, state and output feedbacks don’t achieve deadbeat control
the nonlinear system it can just linearize the nonlinear system and the state feedback
control solves the local tracking problem [19].

Therefore, state and output feedbacks can be used to linearize and stabilize the
nonlinear system and to make the response of the system closely equal the reference
signal.

+ Stabilizing
Controller

- b4

=  Plant -

Figure (2.4): Integral control
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2.3.4. Main objective

From all previous techniques, the ripple-free deadbeat controller for nonlinear system
shown in Fig.(2.5) consist of the following:

e State and output feedbacks with integral controller will be used to linearize and
stabilize nonlinear system with large sampling rate to make the response of
nonlinear system closely equal the reference signal (Time-domain approach).

e Ripple-free deadbeat design based on the internal model principle will be
utilized and applied to the linearized and stabilized nonlinear system with small
sampling rate to make the response of the system exactly equal the reference
signal and provide some robustness(Polynomial approach).

R J,TL N, _’,O_ IIDC L Saxt;;gler ::O— Integrator —tO—'lHoldH Plant lf_’

L KX 5X55--Xp _T'\J

Down T
2 Sampler K f

Figure (2.5): Multi-rate ripple-free deadbeat controller for nonlinear systems

Fig.(2.5) shows the multi-rate digital control for nonlinear system since the state
feedback and output feedback have sampling rate 1/T samples/sec, while reference
signal has sampling rate 1/(T*K) samples/sec and the controller updating rate of
Ni,N2,D; is not the same as the controller updating rate of integrator and feedback
gains.

2.4. Deadbeat controller for linear systems (Polynomial approach)

A linear system is a mathematical model of a system based on the use of a linear
operator. Linear systems typically exhibit features and properties that are much simpler
than nonlinear systems [14].

When we want to control the linear system, in general we use the Laplace
transform (Z-Transform for digital systems) to represent the system, and when we want
to examine the frequency characteristics of a system, we use the Fourier Transform. It is
easy to evaluate the Laplace transform of first order differential equation, but it is
difficult when the system has multiple first-order differential equations, so state-space
approach has become popular [15].

In control engineering, a state space representation is a mathematical model of a
physical system as a set of input, output and state variables related by first-order
differential equations as shown in Fig. (2.6). The state space representation (also known
as the "time-domain approach™) provides a convenient and compact way to model and
analyze systems with multiple inputs and outputs [16].

8
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The most general state-space representation of a linear system is written in the
following form:

[x‘(t):A(t)x(t)+B(t)u(t)} 2.1)
y@®)=C@t)xt)+Dtu() ‘
I
X 4 X
u>—+—73e B - e C Y
A l—

Figure (2.6): Block diagram representation of the state space equations

Were A(t), B(t), C(t) and D(t) are a function of time, In most models A,B,C and D are
time invariant giving rise to the model

. :A B (
HIERE

This system can be converted to transfer function in the s-domain using Laplace
transform. A discrete model can be obtained using the z-transform or modified z-
transform for delayed systems. According to Paz [11] the deadbeat controller
polynomials are obtained by solutions of two Diophantine equations:

N.(@)N,@)+D,(@)Q,(@q)=1 (2.3)
N, (@)N,(@)+D,(@)D.(@)=1 (2.4)

Since the Diophantine equation has an infinite number of solutions, we
will seek specific solutions that provide desired transient behavior and robustness. In
general, Diophantine equations have unique, minimum-order solutions, so there exist

unique Nlmin (q)l lein(q)’ N2min(q)1 and Dcmin(q)Where:

Degree(N,,,, )< Degree (D,) (2.5)
Degree (Q,,,,) < Degree (N,) ~(2.6)
Degree (N,,, )< degree (D,) 2.7)
Degree (D, )< degree (N, ) (2.8)

These solutions will be applied to the plant as shown in Fig. (2.7),
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Digital Controller

RADT:D 1 @) IC
C

NEmin (q) |

Figure (2.7): Implementation of the RFDC for linear systems.

When the control magnitude is constraint, Paz proposed a solution to minimize
the magnitude of control signal according to the length of VV; where V1 is vector with
unknown coefficients, Paz evaluates V; using the MATLAB built-in function “qp”
which is a part of the optimization toolbox. Where:

N,(@)=N,,,(@)-D,@NV,@) (2.9)

New N; will be applied to the system as shown in Fig. (2.8)

Digital Controller

l 1
A @)D, @V @O oy
/\LC

Nlmin (q)\- ‘

Figure (2.8): RFDBC for linear systems with constraint on control magnitude.

Two steps will be used to evaluate V1, where the step response of system will be
better, the new vector for the same settling time; will decrease the control magnitude,
overshoot, and error signal.

2.5. Nonlinear systems

In mathematics, a nonlinear system is a system which does not satisfy the
superposition principle, or whose output is not directly proportional to its input. Less
technically, a nonlinear system is any problem where the variable(s) to be solved cannot
be written as a linear combination of independent components such as squared terms in
the following relation [17].

The motion equation of the ball of magnetic ball levitation CE152 is typically
nonlinear that can be modeled such as:
o ik, p
m, X=——>==-m,g (2.10)

(x-x0)2

Where ‘1’ is the coil current, ‘kc’ is coil constant, and ‘Xg’ is position offset.

10
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Taylor series expansion will be used to linearize the nonlinear term in equation
(2.10) by using the first two terms (constant and linear terms) of Taylor series then
feedback linearization will be applied.

2.6. Feedback linearization

Feedback linearization shown in Fig.(2.9) is a popular approach to linearize
nonlinear systems. Therefore, linear control techniques can be applied. Feedback
linearization will be used because of the following reasons:

By using feedback linearization, the dynamic behavior of the system can be
shaped (i.e. it is possible to assign the system eigenvalues to arbitrary values). System
should be observable and controllable to get a feedback from states and to derive the
state vector to final state.

Feedback linearization completely different from conventional linearization,
because feedback linearization is achieved by exact state transformation and feedback,
rather than by linear approximations of the dynamics.[18].

_ul* _miB->®if
L

K |€&=

A 4
!
ll

Figure (2.9): Block diagram representation of system with feedback linearization

A feedback path from the output will be added to form the error, e, which will be fed
forward to the controlled plant via an integrator as shown in Fig. (2.10). The integrator
increases the system type and reduces the error (the previous system with feedback
linearization will be dealt as an open loop system).

I'—:®— u ll_+ lll_gB - X f

f ¥ T =

\ 4
!
|
-

Figure (2.10): Plant with state and output feedback with integral control
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Feedback linearization with integral controller [19] will be programmed using
digital computer with sampling time = T, as shown in Fig. (2.11).

Feedback linearization Plant
. .y
r_mc_.@_“:? e B -)(%)1 j >[C [i—V
C_IK A
T ADC
|

Figure (2.11): Feedback linearization for nonlinear system with sampling time =T,

2.7. Second order approximation

Second order approximation for linearized model will be evaluated using two
parameters —rising time ‘t;” (or settling time ‘ts”) and overshoot- from step response in
order to evaluate the deadbeat controller for linearized model with another sampling
rate. The second order approximation will have the following form [6]:

2
D .11
s’ +28m,5 +w,” @11)

Where. - Damping ratio and a, : natural frequency

Feedback linearization Plant
| = .
r_.mc_.® [l UL »%i J > ChTh
K §
r ADC

|

w2
n _}2

2 2
s +28wm, 5+,

Figure (2.12): Second order approximation of maglev with feedback linearization
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Tuning the parameters of second order system as shown in Fig. (2.12) until the two
outputs Y and Y are the same. Then, o, and & will be @, .., and &, respectively,

and the output of approximated model will be equal to the output of linearized model as
shown in Fig. (2.13).

wn_new =, +8a) (215)
Crew =6 T E; (2.16)

Where, &= and &, are small numbers.

The second order approximation will be as follow:

2 2
(v, +¢,) ,

n_new

SZ+2(§+g§)(a)n+£m)s+(a)n+gw)2:Sz+2§ o . S+a >

new ““n_new n_new

Feedback linearization Plant

I . o+ +
e THEF-0 i BRI
o ¢ A

L o

r

2
0]

n_new

7, 2 —*%
STH28 @, . STO

n_new n_new

Figure (2.13): Exact second order approximation of maglev CE152 with FBL

Nonlinear plant has already linearized with feedback linearization using
sampling time T; sec.; thus, the three blocks Nj, Ny, and D. will be obtained with
another sampling time T, sec. after evaluated the second order approximation to the
linearized plant as shown in Fig.(2.14)

Digital Controller ‘ © 2
R-ADGI 1 L)-EN 1__|DAC e Y
3 Dc 2 2 2
S + new a’n_new S + a)n_new
N2

Figure (2.14): Deadbeat controller for approximated model
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Deadbeat controller will be applied on real time magnetic ball levitation and Ny,
N>, and D will be tuned until reach the required response as shown in Fig.(2.15).

Deadbeat controller Feedback linearization Plant

llk X C 5
.l

Figure (2.15): Deadbeat controller for nonlinear system

Finally, VHDL code for Deadbeat controller will be written and simulated using
Xilinx DSP toolbox, in this toolbox you could define which FPGA kit will be used and
many other properties.

Function
Generator »| AD _’III_’ FG

vl on >y,

Gateway Out

Position
Sensor —® AD [—»{in | #senx
Gateway In

VHDL-Code
Dead-Beat Controller

Deadbeat controller

Function aDcl
Generator ——* NI EN /1

Ipac _,y,

Position
Sensor 1 N2

Figure (2.16): VHDL code vs. SIMULINK block diagram

ol Lalu Zyl_ﬂbl )
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2.8. Designing steps to deadbeat magnetic ball levitation
Magnetic ball levitation CE152 will be used as a case study for nonlinear system
by the following steps

e Deriving the input/output relation of maglev sub-models (D/A converter,
Power amplifier, ball & coil subsystem, Position sensor, A/D converter).

e Evaluating state space of magnetic ball levitation after linearization around
midpoint.

e Applying Controllability and Observability tests to check if the following
steps can be done.

e Evaluating feedback linearization with sampling time T; using MATLAB
built-in function ‘place’, and applying it to magnetic ball levitation CE 152.

e Evaluating second order approximation to the step response of maglev with
feedback linearization.

e Evaluating deadbeat controller for approximated model.
e  Applying deadbeat controller on real time magnetic ball levitation CE152.

e Simulating VHDL code of deadbeat control for real time magnetic ball
levitation using XILINX DSP toolbox and comparing it with the response of
deadbeat block diagram.

2.9. Constraints

The following assumptions are necessary [11].

e 1: nonlinear system is controllable and observable

Possibility of forcing the system into a particular state by using an appropriate
control signal is required; thus, system should be controllable.

Possibility of reading all state variables is required in order to apply feedback
linearization; thus, system should be observable.

e 2: denominator of reference signal and numerator of plant are coprime in
discrete-time.

Possibility of tracking reference signal requires no common factor between
denominator of reference signal and numerator of plant to ensure that, there is no
poles zeros cancellation; thus, denominator of reference signal and numerator of
plant should be coprime.

e 3: there is no sinusoidal term in the reference signal with frequency that
coincides with an integer multiple of the Nyquist frequency.

Possibility of reconstruct the original continuous signal is required to compare
between sensed and reference signals; thus, reference signal must not have
frequency that coincides with an integer multiple of the Nyquist frequency.

15
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CHAPTER 3 MAGNETIC BALL LEVITATION CE 152

Levitation (from Latin levitas "lightness™) is the process by which an object is
suspended by a physical force against gravity, in a stable position without solid physical
contact. A number of different techniques have been developed to levitate matter,
including the aerodynamic, magnetic, acoustic, electromagnetic, electrostatic, gas film,
and optical levitation methods [20]. Magnetic levitation systems have many varied uses
such as in frictionless bearings, high-speed maglev passenger trains, levitation of wind
tunnel models, vibration isolation of sensitive machinery, levitation of molten metal in
induction furnaces and levitation of metal slabs during manufacturing. These systems
have nonlinear dynamics that are usually open loop unstable and, as a result, a high
performance feedback controller is required to control the position of the levitated
object. Due to inherent nonlinearities associated with electromechanical dynamics, the
control problem is usually quite challenging to the control engineers, since a linear
controller is valid only about a small region around a nominal operating point [21]. This
chapter will talk about magnetic ball levitation CE152 as one of Magnetic levitation
systems.

3.1. Introduction to magnetic ball levitation CE152

The Magnetic Levitation Apparatus shows control problems with nonlinear,
unstable systems. The apparatus consists of a steel ball held in a magnetic field
produced by a current-carrying coil. At equilibrium, the downward force on the ball due
to gravity (its weight) is balanced by the upward magnetic force of attraction of the ball
towards the coil. Any imbalance, the ball will move away from the set-point position.
The basic control task is to control the vertical position of the freely levitating ball in
the magnetic field of the coil. The Magnetic Levitation Apparatus is a nonlinear,
dynamic system with one input (set point) and two outputs (ball position and coil
current)[22].

The CE 152 Magnetic Levitation Model, shown in Fig(3.1) and its Diagram,
shown in Fig.(3.2) is an unstable system designed for studying system dynamics and
experimenting with number of different control algorithms[23].

16
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Figure (3.2): Principal scheme of the magnetic levitation model.

3.2. Model analysis

The CE152 model, shown in Fig. (3.2) consists of the following sub models [24]:

e D/A converter.

e Power amplifier.

e Ball & coil subsystem.
e Position sensor.

e A/D converter.

BRE fyl_llsl a

www.manharaa.com




3.2.1. DI/A converter

D/A Converter, shown in Fig.(3.3) has model output voltage ‘u’, The D/A
converter input ‘Uyy’, The Digital to Analog converter gain ‘Kpa’, and The D/A
converter offset Up. The output is defined in eq.(3.1)

U=U,,, *Ky. +U, (32

[-] Uy [Vl

Figure (3.3): D/A Converter.

3.2.2. Power amplifier:

The power amplifier is designed as a source of constant current with the feedback
current stabilization. As shown in Fig(3.4). Relation between input current to and output
voltage from power amplifier will be found:

— ) . R L
i [A — am [A]
UV] lu UnV]
m V] U[V]
i 1 <
—_— — v Rs
v
N
_L_
(a) Power amplifier (b) Internal structure

Figure (3.4): The power amplifier and its internal structure.

From intern_al structure
um=iR+L%+Rsi (3.2
U =K., (UK, (iR)) (3.3)
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From (3.2) and (3.3)
.'.iR+Lﬂ+Rsi:Kam(u-Ks(iRs)) = IR+LIS+R 1=K, U-K_ KR

K 1
U R | Lo RHKuKRs

R R
. . I _K 1
if R > R -K, KR, such as this system = —=—% (3.4)

U R|L
ES+1

simplify the previous relation
1 L (3.5)

U 'Ts+l
where K, is Gain, T, is time constant

Equation (3.5) will be used in the next chapter to derive the state space of
linearized model of magnetic ball levitation CE 152

3.2.3. Ball and coil subsystem:

Figure (3.5): Free diagram of the ball and the forces.

The motion equation is based on the balance of all forces acting on the Ball. We
have three forces: gravity force Fq, electromagnetic force Fr, and the acceleration force
Fa., as shown in Fig (3.5), equation of free body diagram will be derived where ‘I’ is the
coil current, k¢ is coil constant, X, is position offset, and Kg, is damping constant.
According to Newton’s second law of motion, the acceleration of an object as produced
by a net force is directly proportional to the magnitude of the net force, in the same
direction as the net force, and inversely proportional to the mass of the object [25].
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The net force

F=F.-F, (3.6)
Where;
Magnetic force
=2
L (3.7)
(X-X,)
Gravitational force
F,=m.g (3.8)
Accelaration force
F,=m,X (3.9)
Substituting (3.7),(3.8), and (3.9) into (3.6)
2
ka:L%-mkg (3.10)
(XX,

Limits of the ball movements and ball damping is taken into account. So, to model the
damping, the term Ky, is introduced into the equation

=2
m, X+K;, X:LCZ-mkg ---(3.11)

0

Equation (3.11) will be used in the next chapter to derive the state space of linearized
model of magnetic ball levitation CE 152

3.2.4. Position sensor.

The position sensor, shown in Fig.(3.6) which used to measure the ball position has
model output voltage “Y’, The Ball position ‘x’, The position sensor gain ‘Ky’, and The
position sensor offsetY.The output is defined in eq.(3.12)

Yo

Figure (3.6): Position sensor subsystem.

Y=k X +Y, (3.12)
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3.2.5. A/D converter.

The A/D Converter, shown if Fig.(3.7) has model output voltage “Ymy’, The A/D
converter input ‘Y, The analog to digital converter gain ‘Kap’, and The A/D converter

offset “Ymuo’.

The output is defined in eq.(3.13)

YMU :KADY+YMUO (313)
KAD
Y Ywmu
—
YMUO
Figure (3.7): D/A converter
3.2.6. Magnetic constant “kc ”
- 1 - 2
Coil energy W, =§LI (3.14)
2
Inductance L= (3.15)
Resistance R= (3.16)
HA
substituting (3.16) into (3.15)
2 2
L =N" _uAN (3.17)
R I
substituting (3.17) into (3.14)
2 2; 2
w, =+ (AN iz #AN (3.18)
2 | 2*1
2; 2
Force F, = aw, :—’UAN2 : (3.19)
dl 2l
£ 2

E - K. (3.20)

m |2

from (3.19) and (3.20)
_ uAN 2

-k,
2
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3.3. Complete modeling:

The final block diagram of the magnetic levitation model CE 152 is given in
SIMULINK model as shown in Fig.(3.8):

In Voltage

D/A converter
gain and offset

k DA*u

DA converter

saturation

Power amplifier

and coll

K |

>

>

Tas+l T

k c/(u-x 0)y2 <
variable gap
8 > velocity
Motion P~ 1/s » 1/s
force "
- 1/m position
Fc
mk*g KF%
Gravity :
force Ball damping
——» kx*u | » kAD*u | »(1)
Position sensor AID convertor Out voltage

gain and offset

gain and offset

Figure (3.8): The complete model of magnetic levitation CE152
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CHAPTER 4 FEEDBACK LINEARIZATNION

Linearization refers to finding the linear approximation to a function at a given point. In
the study of dynamical systems, linearization is a method for assessing the local
stability of an equilibrium point of a system of nonlinear differential equations or
discrete dynamical systems. This method is used in fields such as engineering.

Linearization makes it possible to use tools for studying linear systems to analyze
the behavior of a nonlinear function near a given point [26].

4.1. Nonlinear systems

Nonlinear system representation means the characterization of nonlinear systems
using nonlinear mathematical models. In fact, nonlinear models may be considered as a
tool for explaining the nonlinear behavior patterns in terms of a set of easily understood
elements [19].

In nature, most practical systems used for control are essentially nonlinear, and
in many applications, particular in the area of chaos, it is the nonlinear rather than the
linear characteristics that are most used. Signals found in the physical world are also far
from conforming to linear models. Indeed, the complex structure of dynamic systems
makes it almost impossible to use linear models to represent them accurately [27].

Nonlinear models are designed to provide a better mathematical way to
characterize the inherent nonlinearity in real dynamic systems, although we may not be
able to consider all their physical properties.

The linearization of a function is the first and second order terms of its Taylor
series expansion around the point of interest.

4.2. Taylor series.

In mathematics, the Taylor series is a representation of a function as an infinite sum of
terms calculated from the values of its derivatives at a single point. If the series is
centered at zero, the series is also called a Maclaurin series(special case of Taylor's
series). It is common practice to use a finite number of terms of the series to
approximate a function.
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The Taylor series of a real or complex function f(x) that is infinitely differentiable in a
neighborhood of a real or complex number a is the power series.

f (a) f(a) . %@ 3
f (a)+T(x —a)+7(x —-a) +T(X A e ———

L (n)
:zf nfa) (x —a)".

n=0

If the system has two variables, Taylor series can be written as :
f(x,y)=f(a.b)+ {w (x-a)+ M(y—b)] T
() (n

Dy lAULL PREUL S (y—be

S| 9 (a)*nt o™ (b)*n!
example
If you don't have a calculator and you want to approximate f(x)=+/4.001
let us use a=4

. f(x) = Zf(nn)w (4.001-4)".=

(3)
f(4)+fi—l‘l)(4.001—4)+fé—‘:)(4.001—4)2+f (4)(4001 7
1 | 3
4+ —=—(0.001) + ———(0.001) + ————(0.001)° +——~
2*(4)2*1l 4*(4)2*2| 8*(4)? *3!
3
=2+ 1*107%) + 1*10 1%10°) 4 ————————
2*2*1( ) 4*8*2( ) 8*32*6( )
*10-3 _(1*10-° *10~2°
_,, 0*10%) —@*10°%) (@*0°%)
4 64 512

If 1 use just first two terms, the result will be f(x)=2+0.00025 =2.0002500000

and If I use a calculator, the result wil be ~ f(x)=44.001  =2.0002499844
The two results are approximately the same,
result of approximation will be better if | use extra terms.

In Figure (4.1) The exponential function (in blue), and the sum of the first n+1
terms of its Taylor series at 0 (in red)

n=0
10} : 10
\ L5
A
5 \ 5
A\
.1
‘ &—/
0 0
-2 0 2 —2 0 2 - 0 2

Figure (4.1): Taylor series expantion.
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4.3. State space of magnetic ball levitation CE 152

The magnetic ball levitation CE152, shown in Fig.(3.1) and Fig.(3.2) is

characterized by third order differential equation as shown in equation (3.11)
L ik, .
m, X= —z'mkg'kfv X
(X'Xo)

In order to obtain a state variable model,

let x,= X 4.2)
X, =X; =X 4.2)
X, =i 4.3)

Substituting (4.1),(4.2), and (4.3) into equation (3.11)

+2

. .. . |
= X, =X =| mxX,+k, X,=—— >-Mm,g 4.9
(Xl'xo)
X, =X,
:2
. ik k. X
X2: c Z_g_ fv 2 (45)
m, (Xl'xo) my
X, =I

From equation (3.5) = (T,s +1) 1 =K,U

Where i(t) can be defined such as:

T ()+i )= Ku®=i()= Ki“(?"(t) (4.6)
from equation (4.4)
:2
Using Taylor to linearize the term K, > around x=a, and i = b.
(X'Xo)
ik i |
f(X,i)= c - :kc|: :| (47)
(X'Xo) (X_XO)

Since, this term has two variables (position ‘vertical displacement’, and coil current),
extended form of Taylor series with two variables will be used, thus; this series yields
the first two terms such as:

- o(f (a,b)) o(f (a,b)). )
f(x,i)=f (a,b)+(—a(a)*1! X0+ o |(t)] (4.8)
. i bk, [ 2k 2%k *b |. .
‘k{u-xo)} (5, [ (ax,) }X“’{(a-xof}'“) )

Substituting (4.9) into (4.4)
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. 2 %l *h? *lo *
m, X= bk, +[2 k.*D ]x(t){2 K, b}i(t)-mkg-kfvx

(ax,)" | (ax,) (ax, )’
. 2%k *p? 2*k *b | . b2k
o = __—__c¢c - -k c C M O | e . 0
mk X2 [ (a—Xo)3 ] Xl fv X2 + l: (a-x0)2 ] I(t) + [(a_xo)z mng (4 1 )

When the ball is fixed at position (x,) zero; then, the velocity (x, ), acceleration:

the derivative of velocity (x,) and the coil current (i) are all equal zero.

Substituting x,,X,,X,,and i =0 into equation (3.6)

1178217020

2*Kk_*b’ 2*k_*b b’k
2w m, (0)=| =———| (0) -k, (0 =~ |(© ..
mk() [ (a_xo)g :I () fv ( ) + |:(a-x0)2 :| ( ) + L(a_xo)z mkg)
b’k
— e . =0 (4.11
:[(a'xo)z mkg] )

subsituting (4.11) into (4.10)

om,

. x| *h?2 *le *
xzz{“—cb} X, -k, X, + {2( k. b} i t) (4.12)

(a'xo )3

from equation (4.12) and (4.6)

X, =1

%l *h? *| *
2%k, b}xl_kfvszr{ch b}i(t)

mk(a-x0)3 m, mk(a-x0)2
© Ku)-i(t)
Ta
X.1=X2
. O%*l *h?2 x|l *
2K bsxl- Ky y o4 Lbz i (t) (4.13)
m, (a-X, ) m, m, (a-X, )
- di.
X, =—I(t
2T gt (t) |
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Figure (4.2): Plant of magnetic Ball levitation CE152

.. The state space of linearized model shown in Fig.(4.2) around point (a,b) will be

, 0 1 0

B pxg xp || 0

X, |= c — o c X, [+ 0 |u() (4.14)

%, m (aX,)” M  mg(ax,) x| | K,

0 0 ES | Ta
L Ta
Xl
y=[1 0 0]|x, (4.15)
X

Adding the gain of DAC, ADC, and sensor gain as shown in Fig(3.2), will

result in the following state space model.

( '.\11.' Kpa

Yo

Figure (4.3): Plant of magnetic Ball levitation CE152 with ADC, and DAC
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UMU (t)

(4.16)

X, 0 1 0 )
| | 2%k, *b? -k,  2*k *b ||’
X, | = 3 X, |+
) m,(a%,)” M m(aX,) y
X, 1 8
. 0 0 = I
L Ta _
Xl
Yo =[KiKpo 0 0]l X,
XS

(4.17)

Equation (4.16) and (4.17) will be used with Table (4.1) shown in the next page
to find state space model of linearized magnetic ball levitation.

Table (4.1): Parameters of magnetic ball levitation CE 152 [22]

Parameter Symbol Value

ball diameter Dk 12.7x10-3 m

ball mass mk 0.0084 kg

distance from the ground and the edge of the magnetic coil | Td 0.019m

distance of limits= 0.019 - Dk L 0.0063 m

gravity acceleration constant g 9.81 m.s™-2

maximum DA converter output voltage U DAmM 5V

coil resistance Rc 3.5Q

coil inductance Lc 30x10° H

current sensor resistance Rs 0.25Q

current sensor gain Ks 13.33

power amplifier gain K_am 100

maximum power amplifier output current I_am 1.2A

amplifier time constant= Lc/((Rc+Rs)+Rs*Ks*K_am) Ta 1.8694 x10™ s

amplifier gain= K_am / ((Rc+Rs)+Rs*Ks*K_am) K i 0.2967

viscose friction KFv 0.02 N.s/m

converter gain k DA 10

Digital to Analog converter offset u0 ov

Analog to Digital converter gain k_ AD 0.2

Analog to Digital converter offset y_MUO ov

position sensor constant k X 797.4603

coil bias X_o 8.26 x10° m

Aggregated coil constant k f 0.606 x10°®
N/V

coil constant =k_f/(k_i)*2 k ¢ 6.8823 x10°®
N/V
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Fig. (4.4) shows all possible positions and the center position of magnetic ball
levitation’s ball

N S—
(,_____.__)
l D
: /
—\'/ 0.019 m
0.0(/)]\95 m -, \L— 0.01585 m
—— 1%

Figure (4.4): Position of ball at equilibrium
At equilibrium

1)  Ball velocity, and accelaration af ball = 0= x, =X, =%, =0
2)  The derivative of current = 0
(let us use the center)=> x, = 0.0095m ... (a=0.0095)

Substituting the position of the ball at center as shown in Fig.(4.3), and
parameters as in Table.(4.1) in equation (4.11)

2 2
bk, -mg [=0=> b = Mg _, b =+ |8
(a-xo) kc (a-XO) kc

= b= (ax, ) ¥, [k (4.18)

b==+(ax,)*, /% - £(0.0095-0.00826) * % _
c ] e—

(0.00759)(«/11973.32287) ~0.13568 A .. (b=0.13568)

To compute the input voltage at this point.
from equation (3.2)

x3=i=w=o: K.u(®—i (t) = 0= K,u(t) =i (t)

a

i (t)
K.

_ 013568 0.4573V

0.2967

o u(t) = (4.19)
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The resulting state space model of linearized magnetic ball levitation CE152 is

X1 0 1 0 X1 0
X, |=|-15821.62 -2.381 14459 || X, [+| 0 Uy () (4.20)
X4 0 0 -534931]| x, | |79357.013
*1
Y\u=[159.49206 0 0] x, (4.21)
X3
where
0 1 0 0
A=|-15821.62 -2.381 14459 |, B=| 0 (4.22)
0 0  -53493.1 79357.013
C=[ 159.49206 0 0], D=[0] (4.23)

4.4. Controllability and Observability tests:

Before, designing a feedback linearization controller, Controllability and
Observability tests must be done.

Where
Controllability matrix

Q.=[B AB A’B] (4.24)

Observability matrix

C
0,=| CA (4.25)
CA?

Substituting (4.22) and (4.23) into (4.24) and (4.25)

0 0 1.1476e7
Q. = 0 1.1476e7 -6.13%11
7.9357e4 -4.2454e9  2.270953el4

since Q. has full rank , then system is controllable
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159.49206 0 0
O,= 0 159.49206 0
-2523422.76 -379.750594860  23061.913907760

since O, has full rank , then system is observable

Thus, state feedback control is possible

4.5. Transfer function of linearized model

Transfer function G(s) is defined such as: G(s):C(SI-A)f1 B

-1

s 00 0 1 0 0
:[159.49206 0 0] 0 s 0]|-15821.62 -2.381 144.596 0
0 0 s 0 0 -53493.1 79357.013
(1.83%10°) N (s)

G(s)= (4.26)

s°+(5.349*10" 5°)+(1.432*10° s ) +(8.464*10°) " D(s)

4.6. Specified transfer function.

The specification for the controller is to be able to position the ball at any arbitrary
location in the magnetic field and to move the ball smoothly from one position to
another. Thus, the specified transfer function can be obtained from the specifications

such as: ,0s, of 5% and setlling time ,t,, of 0.01 sec.
OS =5%; (4.27)
t, =0.0% (4.28)

To obtain a prototype, we need to translate the system specifications to ¢ and @, such
as;

2 2
= [AMOS) [ INQO05) _ g 5q0 (4.29)
In(0S)" + In(0.05)" + 7«
In(O.S 1—42) |n(0.05 1—0.69012)
o, =— - — 480.95 (4.30)
t, 0.6901*0.01

31

www.manaraa.com



2

. .
.. The second order prototype is n 4.31
Prototyp $°+2**w, s+w,” (431)

Substituting (4.31) and (4.32) into (4.33)
(480.95)° (2.3135)

52 +(2%0.6901*480.95)s +(480.95)° s°+(663.8)s +(2.3135)

(2.313*10°) @32
s?+(663.8)s +(2.313%10°) '
with charachteristic equation s* +(663.8)s +(2.313*105) =0 (4.33)
and pools| (-331.91 +348.07i), (-331.91 - 348.07i) |
Since the linearized model of magnetic levitation CE152 is third order system
‘equation(4.26)', we need to add a third pole to our prototype such as
Third pole = 100*real(first pole)=-33191
. Required Pools = [ (-331.91 + 348.07i), (-331.91 - 348.07i),(-33191) |--------- (4.34)
The specified Characteristic equation
a(s) =s® +(33854.82)s* + ( 22264166.593)s + (7677641650.843) (4.35)

4.7. State feedback

To obtain a state feedback control law, we need to find a matrix K that equates
the pools of magnetic ball levitation CE 152 with the pools of the prototype.
Given the system shown in Fig.(4.5),

X =AX +Bu (4.36)
y =Cx (4.37)

A

Figure (4.5): State space representation of a plant

We need to construct a state feedback control law as shown in Fig.(4.6)
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o uB-):%XI
A

<

Figure (4.6): Plant with state feedback

In feedback control system, the output states are fed back by the feedback vector
(K) to the summing junction. Then the state equations for the closed loop system can be

written as:

X =AX +Bu =Ax +B(r —Kx)=(A -BK)x +Br
y =Cx

(4.38)

To obtain K equation, the specified characteristic equation «(S) and
denominator of linearized maglev D(s) should be used, you could use the MATLAB

built-in function ‘place’ to evaluate K.
Then,

K=[622.3322 1.9316 -0.2475]=[K, K, k]
k,=-0.2475, k,=1.9316, k,=622.3322

(4.39)

Adding the gain of position sensor k, and the gain of
ADC k,, to the gain k;

. newk; = K, __ 6223322 =3.9019

(4.40)

k *k,, 797.4603*0.2

4.8. State feedback and integral controller

(4.42)

When applying the feedback gain to the maglev CE152, the ball didn’t settle which
means the steady state error is very large; thus, a feedback path from the output has
been added to form the error, e, which is fed forward to the controlled plant via an
integrator as shown in Fig. (4.7). The integrator increases the system type and reduces

the error [19].

T }@_, }' | T __‘*_Qll__B _):%X

-

» |-

Figure (4.7): Plant with state feedback and integral control
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K4 will be obtained by trial and error, The resulting system is shown in SIMULINK
formulation in Fig. (4.8).

Power amplifier
and coil
ki

DA Converter

Ball damping

Feedback Gain

Figure (4.8): CE152 with feedback linearization and integral controller

4.9. Digital controller for feedback linearization

The selection of the sampling time plays a big role in digital control; however, this
topic is beyond this research; thus, a sampling time ‘t;’=0.001 sec was chosen. All
feedback gains will be taken from the output, so, The gain of position sensor k, and
the gain of analog to digital converter kap should be applied.

In digital control, the velocity is obtained by taking the present value minus
previous value of position divided by sampling time.

1 1
k *k,p *t,  797.4603*0.2*0.001

X

so, multiplying gain k, by =6.2699------------- (4.42)

S

The MATLAB built-in function c2d is used to convert integrator from
continuous to digital using first order hold. Since, when the integrator was converted
from analog to digital using zero order hold, the system did not work well, after that
I used first order hold since it’s more accurate and the system worked well.

c2d tf (11 0])..001, fon’) = 2202 ZZ_+10'°°°5 (4.43)

The resulting maglev system with digital feedback linearization and integral
controller is shown in SIMULINK formulation in Fig.( 4.9)
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6.8823 e-006 / (u - 0.0083 )"2

variable gap 1

0.0005 z+0.0005 Power amplifier
e and coil 1
21
0.2967
integrator i D/A

1.8694 e-005 s+1

DA Conwerter 1

Add 1

iti
position AD comerter

and
Position sensor 1

Feedback Gain 2
Signal Generator

-0.2475

Gravity
force 1 Ball damping 1

sum3
<1936 6.2699 (¢
Feedback Gain 1 - Feedback Gain3
z
Unit Delay

3.9020 |«

Feedback Gain

Figure (4.9): CE152 with digital feedback linearization and integral controller

4.10. Parameters modifications for real time magnetic ball levitation

When appling this controller to real time magnetic ball levitation CE152, the system did
not work successfully. Modifications were made to the parameters of feedback
linearization, as shown in Fig.(4.10) until the system worked well.

Gain 3

}—‘ Manual Switch 0:0005(240:0005} 4>{ : >_‘
z-1
Gain 4
Step +
. 4 integrator t
- »! Analog
- d “ Output
g A

nalog Output

Setpoint Offset

Current _i

Analog
Input

Signal Generator

sen_X

Analog
Input

0.2

Feedback Gain

present position

Figure (4.10): Feedback linearization of real-time magnetic ball levitation.
From Fig. (4.8) and (4.9) you can see that k; changed from 3.902 to 1.2975, k;, changed

from (6.2966*1.9316=12.1625) to 14.755, and There is no noticeable change when
converting the value of k3,
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Position sensor will read the position and convert it to volt. The maximum
displacement from lowest to highest position is about 1cm as shown in Fig. (4.11). At
lowest position ‘0 cm’ the sensor will read OV and from highest position ‘1 cm’ the
sensor will read 5V. To create an error signal, the sensed value (present ball’s position)
is subtracted from the desired value (required ball’s position). Thus, the sensed value
should be multiplied by 0.2’ to convert it from voltage to position.

5 volts is required to be applied on the coil to make the ball suspended at the
upper pole ‘lcm’ . Therefore, the control value should be multiplied by ‘5’ to convert it
from position to voltage.

J

| R — -

5V
0.019 m

0.01m

I

Figure (4.11): Lowest and highest ball’s positions.

|

Example: The reference signal is constant and equal 0.5 (‘required vertical
displacement is 0.5cm )

—FP
D

| Psition sensor — O

0.5
cm

Figure (4.12): lllustrative drawing of the need to add the feedback gain “0.2’
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4.11. Simplification of feedback linearization of real-time system

Remove Gain 3, Gain 4 and feedback Gain from Fig(4.9), and then make the
required changes. The resulting system is shown in SIMULINK formulation in Fig.(
4.13)

0.0005 z + 0.0005 0.0625 z + 0.0625

Integrator= *25*5 = (4.44)
z-1 z-1

Ksnew =57%.0084 = 0.042 (4.45)

Kionew =Ky *5*0.2= K., (4.46)

0.06255 z+0.0625

z-1

L = (1)
- -
integrator

- From 010 5V Y
Add2
K3
sen_|
0042 4— (2

difference

I+

14 755 z-14 755
4 l

<
sen_X
12975 ) 3

K1

02 |

Feedback Gain 3

Figure (4.13): First simplification of FBL of real-time maglev CE152.

Current sensor smoothes the response of the system; thus, removing it to
approximate the system and to be able to program the system in any programmable kit,
combining the circled terms. The resulting system is shown in SIMULINK formulation

in Fig.(4.14)
Circled terms= 14.755 z -14.755 10975 — 16.0525 z -14.755 (4.47)

z z

0_05255 2+0.0625

z-1

integrator

16.0525 z-14 755

z

TF

Position _X

0.2

Feedback Gain 3

Figure (4.14): Second simplification of FBL of real-time maglev CE152.
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The circled block can be moved to arrowed locations in order to simplify the
system. The resulting system is shown in SIMULINK formulation in Fig.( 4.15)

0.0625z +0.0625 0.0125z +0.0125
z-1 z-1

Integrator=0.2* (4.48)

Add2
0.06255 z+0.0625

= aal e < —
DB_sat z1 : EE

integrator 2 From Ota 5V Y
TF1
16 0525 z-14 755
Ll
Z
TF2
0.0126 7+0.0125 sen X
) : : < 2
-

Figure (4.15): Third simplification of FBL of real-time maglev CE152.

The two circled blocks in Fig. (4.15) can be combined as shown in Fig(4.16)

. 0.0125 z + 0.0125 16.0525 z -14.755
Circled terms= +

z-1 y4

16.065 z*-30.795 z+14.7550

(
> (4.49)
7’ -z
In1 0.0625 2+0.0625
>
z-1
integrator — - From 0to 5 V Out2
feedback _TF

16.0650 72-30.7950 z+14 .7550 In3

: : : N 2 )
ZZ-Z

Figure (4.16): Simplification of FBL of real-time maglev CE152.
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4.12. Digital equations of feedback linearization

Feedback linearization shown in Fig.(4.17) consists of three blocks: two transfer
functions and saturation. The three blocks will be converted to equations that can be
programmed using any programmable kit.

4.12.1. Feedback Transfer function

Feedback TF

Aﬂ 16 0650 z2-30 7850 z+14 7550 - 5en X
2z -

Figure (4.17): Feedback transfer function

A 16.0650 Z° -30.7950 Z +14.7550 16.0650 -30.7950 Z" + 14.7550Z°*
senX z¢ -Z 1-27"
~.A(n)=16.0650 senX (n) -30.7950 senX (n—-1) + 14.7550 senX (n—2)+ A(n —1)----- (4.51)

(4.50)

4.12.2. Integrator

Integrator

0.0625 z+0. 0625
FB% — o | "B

Figure (4.18): Integrator

B 0.0625Z+0.0625 0.0625 + 0.0625 Z*

B _ > (4.52)
FB Z -1 1-2Z
~.B(n) =0.0625FB(n) +0.0625 FB(n -1)+B (n -1) (4.53)
4.12.3. Saturation
B

— T |op Lo OPS

L’J From0to 3V

Figure (4.19): Saturation
From (4.51) and (4.53)
.. OP=B-A (4.54)
if (OP>5) then OP=5; elseif (OP<0) then OP=0; (4.55)

OPS=0FP;
Equations (4.51), (4.53) and (4.55) should be used to wrie VHDL code for feedback

linearization
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CHAPTER 5 METHODOLOGY AND APPROACH

This chapter covers the approached methodology used to develop the control law
for linear systems, used to deadbeat nonlinear system using multi-rate deadbeat
controller, used to write VHDL code for deadbeat controller of magnetic ball levitation.

5.1. Introduction

The problem of tracking a general reference signal in a ripple-free deadbeat fashion
for nonlinear, SISO multi-rate systems is considered. We give a design procedure for a
controller under which the output of the closed loop system exactly coincides with the
reference signal after a fixed (finite) time. The design provided here allows for constraints
on control magnitude as well as on many time domain properties such as overshoot, norms
of control signal and error signal.

The Diophantine equation plays an important role in the design and synthesis of
controllers in the frequency domain. The Diophantine equation has an infinite number of
solutions that all provide an internally stabilizing controller. The parameterization of the
Diophantine equation is based on obtaining a matrix equation with the two unknown
expressed in matrix form

5.2. Obtaining a model

Fig. (5.1) shows the deadbeat controller for linear plant P which consist of the original
plant to be controlled G, and the modeled filter M,

U
Digital Controller Plant

R ADC NI —-{::_-\' EN , ]:1):: :["C Mc H Ge }— —eY
[/— N2 W— L

Figure (5.1): Block diagram of deadbeat controller
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The following functions are written in g-domain

From figure (5.1)

denR*(denP*Dc+numP*N, )

41

P =Mc*Gc (5.1)
v - R*N,-Y *N, xp - R*N,*P Y *N,*P
DC DC DC
* * * * * *
Ly +Y N,*P _R*N, P:>Y=R N,*P (5.2)
Dc Dc Dc+N,*P
numR wN* numP
Ly _denR ' denP _ numR *numP *N,
Dc+N2*numP denR *denP *Dc +denR *numP *N ,
denP
*
_ numR numP *N (5.3)
denR { denP *Dc +numP *N,
From Equation number (5.3)
Y (Desired Response) will be equal Reference signal if and only if
numP *N, = denP *Dc+numP *N,
and for fast response (deadbeat) all poles should be at Origin
-.denP *Dc+numP *N, = numP *N, = 1 (5.4)
. denP*Dc+numP*N, = 1. (5.5)
~.numP*N, = 1. (5.6)
Transfer function between control and reference
U:% (5.7)
substituting (5.2) into (5.6)
numR N
U= R*N, _ denR ' _ denP *numR*N, (5.8)
Dc+N,*P 5 4N x»UMP  denP *denR * Dc+denR*numP * N, :
° % denP
Transfer function between Error signal and reference
* *
E=R-Y=R-_~ NP
Dc+N,*P
_((denP*Dc+N2*numP)*numR-(Nl*numP)*numRj 5.9)
= (5.
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Substituting (5.5) and (5.6) into (5.3),(5.8),and (5.9)

*
_ humR numP*N, _ numR Gj:R (5.10)
denR { denP*Dc+numP*N, ) denR \1
B denP*numR*N, _ denP*numR*N, (5.11)
den(R)*(denP*Dc+numP*N,) den(R) e
denP*Dc+N,*numP )*numR-( N,*numP )*numR
E= ( 2 ) (N, ) =Zero (5.12)
denR*(denP*Dc+numP*N, )

The previous results are obtained by the default solution, which make the system
to settle, and eliminate the error within smallest time. The control signal will depend
only on denominator of plant, numerator and denominator of the reference signal, and
the obtained polynomial Nj, so if the infinity norm of control signal is larger than
acceptable value for any programmable kit such as FPGA, DSP Kit, Microcontroller,
and so on. We should decrease the maximum absolute value of control signal by
evaluating another polynomial instead of Ny, so let us called the previous N; as Nimin.

Zero term will be added to the equation (5.6)
numP*N, . +(0)=1=numP*N, . +(Q,*denR)=1

1min 1min
~numP*N, .+ Q,*denR - numP*denR *V,+numP*V, *denR =1
= nuUMP*(N,,,,,— denR *V, )+ denR (Q, + numP*V,)=1
Defining new N1, and Q1
NlneW:Nlmin_ denR*Vl (513)
anew:lein + r“'lrnl:).kvl (514)

Substituting (5.13) into (5.3),(5.8), and(5.9) to find the new transfer functions
from output, control, and error signals versus reference signal.

, _ DumR numP * (Ny;, = denR*V;) _ numR numP*N,__
denR| denP*Dc+numP*N, denR { denP*D,+numP*N,

Y =R (5.15)

lnew

g denP*numR * (N1min - denR* Vl) _ denP*numR*N
den (R)*(denP*Dc+numP* N,) den(R)

U= R*denP (numR*N,,,;, ) (5.16)
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(denP*Dc+ N, * numP)* numR —((N - denR*Vl)* numP)* numR

1min

E:

denR *(denP*Dc+numP* N,)

_( (denP*Dc+N,*numP)*numR-( N, *numP)*numR
B denR*(denP*Dc+numP*N,)

E=zero (5.17)

The previous results make the system to settle, and eliminate the error. The
control signal will depend only on denominator of plant, numerator and denominator of
the reference signal, and the polynomial Ny, that depend on the vector V;.

Paz evaluates V; that decrease the norm of control signal by quadratic
programming.

In the next two sections, two approaches will be discussed to evaluate V; by
another method.

5.3. Decreasing control signal using the first approach

Minimizing control signal by minimizing its numerator by two steps

V1 will be obtained by making equation (5.13) equal zero; this will be solved by making
all coefficient of each order equal zero.

N, =0=> N, - denR*V, =0 (5.18)

1min

where N,.;, and denR are polynomial with known coefficients, while V is vector with
unknown coefficients

Steps:

e Choosing  the length of V; then make a polynomial in g-domain
(a*q+b), (a*q>+b*q +c), and so on. where a,b,c,.... are unknowns.

e Substituting V; into (5.18) and solving the polynomial by making the coefficient
of each order equal zero. Where Nimin and D, are polynomials with known
coefficients. Such as:

(n,z+n,), (n,z* +n,z+n,), and so on. where n,,n,,n,,.... are kKnowns.
Then,

(N, —Dr*v, =0)

1min
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=(n,*a)*q"* +(n,*a+n,*b)*q* + (n,*a+n,*b +n.*c)*q’ +

(ne*b+n7*c'n8)*q + (ng —Np*C+ nll*d) =0

n,*a=0 'n, 0 0 O
a
n,*a+n,*b =0 n, npj, 0 O
b
n,*a+n,*b +n.*c=0| = |n, n, n, O c
ng*b+n,*c-ny =0 0O ng n, O
d
Ng—n,*c+n,*d 10 0 -ny ny|

Using pseudo inverso to find the coefficients of V,
T — —_

(5.19)

. n, 0 0 O] 0
b n, np, 0 O 0
s ¢ |z n, n, ng O 0
g 0O ng n, O Ng
L 0 0 Ny Ny |) [N

Example:
Here, we consider the system in g-domain

pg= 0-0015171 (1+1100) (1+3.2650) (1+0.4257q) (1+0.01981)
(1-2.166q +1.1819°)(1-1.972q +q°)

Discrete time reference signal in g-domain
Ra= 0.020769 q (1+q)

(1-1.9729 +q°)

Minimum order equation of Ny
N, . =-19.6779 *q + 2.8468

1min —

Computing the coefficients of V1 with length equal 3

(5.20)

Let V, =a*q”+b *q+c where a,b,and ¢ are unknown
denR=q°* -1.9723*q + 1

(5.21)

Substituting (5.21),(5.22), N into (5.18)

1min

o N, -denR*V,=(-a)q* +(1.9723 a- b)q® +---

(5.22)

(-a+1.9723b -¢)q° + (-b+1.9723¢-1.9678)q + (2.8468—¢) =0
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i —a=0 1 [ -1 0 0 ] 0 ]
1.9723a-b=0 19723 -1 0 |fa 0
—a+19723b ¢=0 | = | -1 19723 -1 ||[b|=| ©
-b+1.9723¢-1.9678 = 0 0 -1 1.9723| |c| | 1.9678
| 28468-c=0 | | 0 0 -1 | -2.8468 |
[ -1 0 o N[ o ]
al] [[19723 -1 0 0 0.5857
Ibl=|| -1 19723 -1 ||* o0 |=|13719
c 0 -1 19723 1.9678 | |1.9616
0 0 -1 |) |-2.8468]
0.5857
. V,=|1.3719
1.9616

Substituting Nimin, denR, and V; into (2.9) to obtain new N; will increase the order of
N1 as shown in the following relation

- N,=N,_. - denR*V,=0.8852+0.5292q +0.1585q —0.2166q° — 0.5857 * --—--(5.24)

The order of new N; is larger than the order of Ninin by three; therefore, the
length of vector V1 will increase the order of transfer functions from output, control,
and error signals versus reference signal by three. Therefore, the settling time will be
increased by three sampling times.

5.4. Decreasing control signal by second approach

Minimizing control signal by evaluating the new vector called “bestV;” by combining
the vector which was obtained by quadratic programming (Paz method) with vector
which was obtained by my first approach

Steps:
e Computing Vector V; by Paz method and infinity norm of control signal using
this vector
e Computing Vector V1 by my first approach and infinity norm of control signal
using this vector
e Changing the elements of the vector which was obtained by my approach with
elements of the vector which was obtained by Paz (element by element), and

deciding which element of my vector will decrease the norm of control signal
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when replacing with element of Paz vector to make a new vector called “Vyew1”.

This is called “First step”

e Subtracting Vector which was obtained by Paz from vector Vyews to find the new

vector and add the partial of this vector multi-times to Vyew1 and still adding

while the norm of control signal is still decreasing. This is called “Second step”

The previous steps will be done as follow:

Paz Vector

X =[Xy X, X3 Xy s X, ],
Computing the norm of control signal using X
norm(U,inf)=normx

First approach Vector
V, =[V,V, V,V, v, ],
Computing the norm of control signal using V;
norm(U,inf)=normv,

(5.25)

First step:

Changing the first element of X with first element of V;

Vnewl :[Vl X2 X3 X4 """"" X !
Computing the norm of control signal using V,

norm(U,inf)=normV

ew 1

(5.26)

new 1

Changing the second element of X with second element of V;

Voo =[X1V, X3 X, e x. 1,

Computing the norm of control signal using V,

ew 2

(5.27)

norm(U,inf)=normV

new 2

Changing the third element of X with third element of V;

Vnew3 :[Xl X2 V3 X4 """"" X !

Computing the norm of control signal using V,

ew 3

(5.28)

norm(U,inf)=normV

new 3
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Changing the fourth element of X with fourth element of V;

Voe =[X0 X, X5 Vy s x. 1,
Computing the norm of control signal using V., ,

norm(U,inf)=normV -(5.30)

new 4

Changing the n™ element of X with n™ element of V;

V :[)(1 Xy Xy Xy veeeiinns Vn],

newn

Computing the norm of control signal using V., .
norm(U,inf)=normV___ _---- --(5.31)

newn

Using elements which decrease the norm

Assume that normV normV and normV._.__ < normx

new 27 new 47 newn

. the new vector will be V., =[X, V, X; V, cceeee. V] (5.32)

The infinity norm obtained using Vpew less than infinity norm obtained by using
any of the previous vectors

Second step:

The difference between Vector Vye, equation(5.32) and X equation (5.25) will
be used to decrease the infinity norm of control signal by multi iterations as follow:

The difference between X and V

Vi =V =X =XV, Xg Vv, vV =X X, X5 X, X ]
(X =%)  (Vo=%xy) (X3=%3)  (va=X,) o (v, —X,)]

=[0 (v,=%,) 0 (v,=x,) ... (v,—x,)] (5.33)

When adding Vg4to X, the infinity norm of control signal is decreased; thus, the
partial of V4 will be still added to X while the infinity norm of control signal is still
decreasing as follow:
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while new norm < brevious norm

\V/ : . :
Viw =View * Td where L is any positive decimal number -------------- (5.34)
compute new infinity norm
end
Vbest = Vnew '

for example: the while loop was done 4 times and L=10 =

the vector which | called V. =
best

4y 4y 4v,
Vbest:{x1 (v2+1—02j Xq (v4+1—04j (vn+10 ﬂ (5.35)

5.5. Multi-rate ripple-free deadbeat controller for nonlinear system

Magnetic ball Levitation CE152 was chosen as a case study since this apparatus
is placed at IUG laboratory.

Ripple-free deadbeat control is desired to be used to meet the certain specifications such
as: Finding second order approximation of maglev CE152 with feedback linearization
using two parameters rising time (or settling time) and overshoot.

Equations (2.12), (2,13), and (2.14) will be used

2
a,

The second order approximation = — - 5 (5.36)
s“+2lw,S + o,

Converting the approximated model from analog to digital using required
sampling rate in deadbeat Controller

The second order approximation in g-domain
Kq+Lg?
1+Mq +Ng?
Where K,L,M, and N are unknown and depend on damping ratio and natural frequency

(5.37)

The reference signal in g-domain
O +Pq

Input signal R(q)=
(1-Qq +Rq”)

-(5.38)

in z-domain
0z%+Pz
(z?-Qz +R)
Where O,P,Q, and R are unknown
Numerator and denominator of plat and reference signal in g-domain

Input signal R(q)= (5.39)
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numP(q) =Lqg* +Qq,denP(q) =Ng* + Mq +1,denR(q) = Rg* +Qq +1------------ (5.40)
numP(z)= L +Qz,denP(z)=N +Mz +z?,denR(z) =R +Qz +7 *-----mmmmmmmm- (5.41)

Evaluating the minimum order for N; and Q;
Order of vector N, and Q,=max( order(numP), order(denR) ) -1 = 1-----------—--- (5.42)
Evaluating the minimum order for N; and Q1
Order of vector N, and D_=max( order(numP), order(denP) ) -1 = 1------------—-- (5.43)

Defining two polynomials with order equal ‘1’ with unknown coefficients and
making the first Diophantine equation.

let N1 =a*q+b and Q1 = c*g+d where a, b, ¢, and d are unknown---------------- (5.44)
.. First Diophantine equation (Np *N1)+(Dr*Q1) = 1 (5.45)
Substituting (5.40) and (5.44) into (5.45)

o (L*q* + K*qg)(a*g+b) + (Rg*+Q*q+1)(c*q+d) —1=0 (5.46)

= (L*a+R*c)*q® +(K*a+ L*b+Q *c +R *d)*q’ +
(K*b+c+Q*d)*q+(d -1)=0 (5.47)

All coefficients of equation (5.47) should be equal zero, to find all unknowns a,
b, cand d,

L *a+tR*c=0 L *a+tR*c=0
K*a+ L*b+Q*c+R*d =0 K*a+ L*b+Q*c+R*d =0
= [eemee————— (5.48)
K*b+c+Q*d =0 K*b+c+Q*d =0
d-1=0 d=1

Using pseudo inverso to solve equation(5.48), in this special case we don't need to use
pseudo inverso, in general | programmed an m-file to solve any equation either the matrix is
square or not

L 0 R olfal [0
K L RIlb| |0
Q - (5.49)
0 K 1 Qllc| |0
0 0 0 1ldl| |1
al L o R o To
b| |K L R 0
=" = Q * (5.50)
¢l o K 10 0
dl lo 0o o 1 1

~~ Nl=ag+b, Ql =c*g+d, now a, b, ¢, and d are knowns
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Defining two polynomials with order equal ‘1’ with unknown coefficients and
making the second Diophantine equation.

let N, =a*gq+b and D, = c*q+d wherea, b, ¢, and d are unknown---------------- (5.51)
.. Second Diophantine equation (numP*N2)+(denP*Dc)=1 (5.52)
Substituting (5.40) and (5.51) into (5.52)

- (L**+Q*q)(a*g+b) + (N*g? +M*q+1)(c*q+d) ~1=0 (5.53)

= (L*a+N*c)*q’+(Q*a+L*b+M*c +N*d)*q’ +
(Q*b+c +M*d)*q+(d -1)=0 (5.54)

All coefficients of equation (5.47) should be equal zero, to find all unknowns a,
b, cand d.

L*a+N*c=0 L*a+N*c=0
Q*a+L*b+M*c+N*d =0 Q*a+L*b+M*c+N*d =0
= (5.55)
Q*b+c +M*d =0 Q*b+c +M*d =0
d-1=0 d=1
Using pseudo inverso to solve equation(5.48)
'L 0 N 0]a 0
Q L M NjJb 0
s = (5.56)
0 Q 1 M|c 0
0 0 0 1] 1
[a L 0O N O 0
b L M N 0
N = Q * (5.57)
c 0 Q 1 M 0
d 0 0 0 1 1
N2 =a*q+b and Dc = c*g+d (5.58)

These equations will be used in the next step to find deadbeat controller for
approximated model of maglev CE152 with feedback linearization
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6.8823 e-006 / (u - 0.0083 "2

Zero -Order Power amplifier
and coil

0.2967

1.8694 e-005s+1

Ball damping

1000 ‘
s2+805+1000 ‘
Second Order Approximation

Figure (5.2): CE152 with third FBL and its approximated model.

Deadbeat controller for magnetic ball levitation with feedback linearization will
be found by evaluating deadbeat controller for its approximated model, thus deadbeat
1000

controller will be found for —————
$°+80s+1000

to follow reference signal R(s)= ZL :
(s°+4)

Converting the plant and reference signal from s-domain to g-domain with
sampling time = 0.1 sec.

~ 0.038652 q (1+0.76620)

P(q) = (5.59

@ (1-0.8564q) (1-0.52470) (:59)
0.0003q (1+
R (q) = 2000%4( f) (5.60)
(1-2q+q°)

~.nump =[0 0.0387 0.0296],denp=[1 -1.3811 0.4493]

Numerator and denominator of plat and reference signal in g-domain

numP(q)=0.0296*q*+0.0387*q , denP=0.4493*q” -1.3811*q+1 (5.61)

denR(q)=0-2*q+1 (5.62)

z-domain

numP(z)=0.0296+0.0387*z , denP=0.4493 -1.3811z+7° (5.63)

denR(z)=1-2*z+z* (5.64)

Evaluating the minimum order for N; and Q; using equation (5.42)
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Order of vector N, and Q,=max( 1, 2) -1=1 (5.65)

Evaluating the minimum order for N1 and Q; using equation (5.43)
Order of vector N, and D,=max( 1, 2) -1=1 (5.66)

Defining two polynomials with order equal ‘1’ with unknown coefficients and
making the first Diophantine equation using equation (5.44) and (5.45)

. N1 =a*g+b and Q1 =c*x+d wherea, b, ¢, and d are unknowns------------------ (5.67)
Substituting (5.61),(5.62) and (5.67) into (5.45) to make the first Diophantine equation
First Diophantine equation (Np *N1)+(Dr*Q1)=1

. (Np *N1)+(Dr*Q1)-1=0

-.(0.0296*q* +0.0387*q)(a*q+b) + (q°-2*q +1)(c*x+d) -1=0

. (0.0296 *a+c)*q® + ( 0.0387*a+ 0.0296*b —2*c +d)*q* +---

(0.0387*b +c—-2*d)*q+(d -1) =0 (5.68)
Evaluating a, b, ¢, and d by making all coefficients of equation (5.68) equal zero to find
all unknowns a, b, ¢ and d using equations (5.47), (5.49) and (5.50).

002906 0 1 07a] [0
100387 00296 —2 1{b| |0
0 00387 1 -2|lc| |0
0 o 0o 1|d| |1
a] [0026 0 1 07 [0] [ -21.0022
_|b|_|00387 0.0296 -2 1} _|o] | 356409
c 0 00387 1 -2| |0 0.6220
d 0 0o 0 1 1 1

-+ N1=35.64 - 21 q, Q1=1 + 0.622 q

Defining two polynomials with order equal ‘1’ with unknown coefficients and
making the second Diophantine equation using equation (5.51) and (5.52)

.. N2 =a*g+b and Dc = c*x+d where a, b, ¢, and d are unknowns (5.69)
Substituting (5.61), and (5.69) into (5.52) to make the second Diophantine equation
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Second Diophantine Equation (numP*N2)+(denP*Dc)=1

“ (numP*N2)+(denP*Dc)-1=0

(0.0296*a +0.4493*c) *q° +(0.0387*a +0.0296 *b-1.3811*C + 0.4493*d ) *q* +...
(0.0387*b +c -1.3811*d)*q+(d -1) =0 (5.70)

Evaluating a, b, ¢, and d by making all coefficients of equation (5.70) equal zero to find
all unknowns a, b, ¢ and d using equations (5.54), (5.56) and (5.57).

00296 0  0.4493 0 al [o
10.0387 0.0296 -1.3811 0.4493 |[b | |0
0 00387 10000 -1.3811|c| |0
0 0 0 1
a 0.0296 0  0.4493 0] [-8.3666
b| 00387 00296 -1.3811 0.4493 | |0| |21.4633
“lelT | o 00387 -1.3811| [0| | 0.5515
d 0 0 1

N2=21.46 - 8.367 *q, Dc=1 + 0.5515*q

N,=35.64-21q, N,=21.46-8.367 *q, and D_=1 + 0.5515*q will be used in

the following chapter to simulate the deadbeat controller for maglev CE152 with
feedback linearization.

5.6. Converting real-time model from blocks to equations

Ripple-free deadbeat controller with feedback linearization for real-time
magnetic ball levitation shown in Fig.(4.2) consists of two subsystems. The first
subsystem is feedback linearization that consist of two transfer functions with sampling
rate equal 0.001 sec and the second subsystem is deadbeat controller that consist of
three transfer functions with sampling rate equal 0.01 sec.

Setpoint Offset 1 -
4 In1
QOutl In1

Ll
In2
oooo out2 p| Analog
X} 0.01 Output
In3
- Analog Output
Reference Signal

0.001 position -x

Analog

Input

Figure (5.3): SIMULINK deadbeat controller for real-time maglev CE152
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Converting real time model from blocks to equations is very important to
program any circuit or controller on any programmable kit such as PIC, DSP, FPGA,
and so on.

Some programmable kits don’t deal with floating points; thus, fractional number
will be removed with small very affecting on its performance by multiplying the
numerator and denominator of Transfer function by large number 2" before
approximation, where n is positive integer number.

2": multiplying binary number by ‘2’ n-times means shifting the binary number
to the left n-bits

First subsystem: feed-Back linearization
Feedback linearization, shown in Fig.(5.3) consists of three blocks: integrator,

feedback transfer function, and saturation

Inl
(1 ) —Ppm outL|—— P+
. 1)
integrator ) out2
Feed _Back
In3

out1 In1

Figure (5.4): Feedback linearization for real-time maglev CE152

a) Integrator
Integrator of feedback linearization can be converted to equation and re-drawn

by SIMULINK model as shown in Fig.(5.5)

OP _ 0.0625 z + 0.0625

— = (5.71
IN z-1 G.11)
Multiplying numerator and denominator of equation (5.71) by 128

OP _ 8z+8 _ 8+ 8z!

"IN 128z-128 128-1287°

. 128*0OP = 8*IP+8*IP1+128*0OP1 (5.72)
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b)

8 —
Inl Gain + Outl
Gain 2
1
z ﬂ 1

Unit Delay Gain 1

Gain 3 Unit Delay 1

Figure (5.5): Integrator

All gains in the previous figure are not fractional number except the output gain,
1

128 = 2—17 => shifting the output binary number to the right 7 bits.

Feedback Transfer Function
Feedback transfer function of feedback linearization can be converted to
equation and re-drawn by SIMULINK model as shown in Fig.(5.6)

OP 16.0650 -30.7950z" + 14.7550z°°

= (5.73
IP 1-z* (5.73)
Multiplying numerator and denominator of equation (5.73) by 128
_ -1 -2
OP _ 2056-3942z +_118892 (5.74)
IP 128-128z
128 * OP = 2056*IP - 3942*IP1 + 1889*IP2+ 128* OP1 --------------- (5.75)

e

1 Gain -
(i . Ry
In1 z Outl

Unit Delay Gainl + Gain2
1 1 1
—» - —P - 1889 128 €¢— —
z z z
Unit Delay 3  Unit Delay 2 Gain4 Gain3 Unit Delay 1

Figure (5.6): Feedback transfer function

All gains in the previous figure are not fractional number except the output gain,

% = 2—17 => shifting the output binary number to the right 7 bits.
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All blocks of Feedback linearization
Feedback linearization of maglev CE152 can be re-drawn by SIMULINK model

as shown in Fig.(5.6)

Inl

Out2
Gain 7

Gain 8 Unit Delay 5

g‘

Gain 9 Unit Delay 7Unit Delay 6
1 1
1889 - 4 - |4
z Y4

Figure (5.7): Feedback linearization of maglev CE152

Unit Delay Gain 1

Gain 3 Unit Delay 1

Unit Delay 4  Gain6
1
-

z

"

Magnetic ball levitation CE152 worked successfully when applying the block
diagram shown in Fig. (5.7); therefore, feedback linearization can be programmed on
any programmable kit without using fractional number by programming the two
equations (5.72) and (5.75).

Second subsystem: Deadbeat controller
Deadbeat controller consists of three blocks: N1, N2, and 1/D..

a) N,
N; can be converted to equation and re-drawn by SIMULINK model as shown
in Fig.(5.8)
% _ 26.1502 z - 15.4985 (5.76)
z

Multiplying numerator and denominator of equation (5.76) by 128
OP _3347.2256 z-1983.808  3347-1894z *

N 128 7 128
128 * OP = 3347 * IP - 1984 * IP1 (5.77)
3347 O W
Outl
Gain Gain 2

Inl
1
- 1984
z

Unit Delay Gainl

Figure (5.8): Nj of deadbeat controller

All gains in the previous figure are not fractional number except the output gain,

% = 2—17 => shifting the output binary number to the right 7 bits.
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b) N,
N2 can be converted to equation and re-drawn by SIMULINK model as shown in

Fig.(5.9)
% _ 3.4460 zZ -1.6353 5.78)

Multiplying numerator and denominator of equation (5.78) by 128

. OP 4417209 441-209z"*
TP 128 7 128
128 * OP =441 * IP - 209 * IP1 (5.79)

441
Gain
Inl
1
z
Unit Delay Gain1

Figure (5.9): N, of deadbeat controller

All gains in the previous figure are not fractional number except the output gain,

1 _ i:> shifting the output binary number to the right 7 bits.

128 27
1
C —_—

) D

4

Dican be converted to equation and re-drawn by SIMULINK model as shown

[+

in Fig.(5.10)

o°k__ 2 (5.80)
IP Z+ 0.60266

Multiplying numerator and denominator of equation (5.80) by 128

Oop 1282 _ 128

P 128Z+ 77 128 + 77Z*"

128 * OP =128*IP - 77 * OP1 ----(5.81)
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: Gain 1
Unit Delay

Figure (5.10): Di of deadbeat controller

c

Deadbeat model
Deadbeat controller of maglev CE152 can re-drawn by SIMULINK model as
shown in Fig.(5.11)

3347 +

Gain

In1
1
- 1984
z

Unit Delay Gain 1

In2

e

Gain 4 Unit Delay 1

Figure (5.11): Deadbeat of maglev CE152

Therefore, deadbeat controller can be programmed on any programmable Kit
without using fractional number by programming the three equations (5.77),(5.79) and
(5.80)
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5.7. Writing VHDL code for deadbeat controller

In this section, VHDL code for deadbeat controller shown in Fig. (5.12) will be written
using
128 * OP =441 * IP - 209 * IP1, and (5.81): 128 * OP =128*IP - 77 * OPL1.

In1

equations (5.77):

N1

128 * OP = 3347 * IP - 1984 * IP1 ,

26.1502 z-15.4985 C

FG z

1.0000 z+0.60266

(5.79):

Ydc

3.4460 z-1.6353

z

N2

Figure (5.12): Deadbeat of maglev CE152

There are two important steps after evaluating the equations to be programmed

Inputs and output are both 8 bits

23347 ="00000000110100010011"; |
al984 ="00000000011111000000";
a441 ="00000000000110111001"

The largest constant number (3347) requires 12 bits
the summation of multiplication terms for equation (5.72) and (5.75) are 4+2=6 terms
1 bit for -ve or +ve sign and one more bit.
= 20+6+1+1=28 bits will be used

Determining number of bits required for registers and signals in VHDL
language.

Converting constant numbers of equations to be programmed from decimal to
binary using suitable number of bits.
28 bits (used for registers and signals)- 8 bits (used for input and output
signals)=20 bits

a209 ="00000000000011010001";
al28 ="00000000000010000000"
ar’7 ="00000000000001001101" |

(5.82)

You can see VHDL code for deadbeat controller in Appendix A
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CHAPTER 6
SIMULATION AND REAL-TIME APPLICATION

This chapter consists of five sections: the first section discusses evaluating new
vector that can reduce infinity norm of control signal, 2-norm of error signal and
overshoot for linear systems and linearized nonlinear systems. Second section discusses
evaluating second order approximation of linearized magnetic ball levitation. Third
section discusses evaluating multi-rate ripple free deadbeat control for SIMULINK
model of magnetic ball levitation CE152. Fourth section discusses evaluating multi-rate
ripple free deadbeat control for real-time magnetic ball levitation CE152 using data
acquisition card MF624 and real-time toolbox in SIMULINK environment. Fifth section
discusses simulation of VHDL code using Xilinx DSP toolbox

6.1. Improving deadbeat controller for linear systems

In this section, improving deadbeat controller for linear system by evaluating the
best vector which can reduce the maximum absolute value of control signal (required
energy), reduce overshoot, and reduce infinity norm and H2-norm of the tracking error.

R AD(_I'_ N1 1 DAC » Mc || Ge .
Dc
N2 ADC

Figure (6.1): Deadbeat closed loop system

Example:
0

Given the system Gc = exp(-0.2%s)—220
§?-25+2

the sinusoid R(t) = sin(2t+pi/5) and minimizes the infinity norm of control energy.

with time delay = 0.2 sec. We wish to track

Tracking model pc = }OO and the length of vector is 3 will be used.
s°+4

The continuous tracking model filter, is a requirement that ensures the exact tracking of
the reference signal R(t) occurs with no ripple after the transient period[11]

Mec = 90 is chosen since Laplace transform of sin (2t) = _2
s?+4 s*+4
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If we choose the sampling time = 0.1 sec. then:
The reference signal and plant in g-domain will be,

_ 0.19935q (1-0.7573q)

R(@) S
(1-1.96g +g“)

(6.1)

_ 0.086608q (1-+10.28q )(1+1.0419)(1+0.1054q)
(1-2.166q +1.1819%)(1-1.972q +q°)

P(q) (6.2)

Computing the minimum order of N; and Q; using Equation (5.42)
Computing the minimum order solutions to the first Diophantine equations using
equations (5.45) to (5.50), we obtain:

[N 1=1.49-1.111q. } ©3)
\ .

Q1=1+1.831q +1.211q2 +0.1085¢°.

Computing the minimum order of N, and D, using Equation (5.43)
Computing the minimum order solutions to the second Diophantine equations using
equations (5.51) to (5.58), we obtain:

N 2=6.73-1.482q +1.197q° —3.434q°
{ q+127 a } 6.4)

Dc =1+3.577q +2.97q° +0.2746q°

After that,
Computing the transfer functions from output, control, and error signals versus

reference signal using equations (5.3),(5,7), and (5.9) or using RFsys.m in Appendix B,
we obtain:

Ter =1-0.129q —1.378q° —0.435q° +0.999q * +0.109q°. (6.5)
Tur =1.49-7.309q +1.4360° —1.419° + 6.9259* —1.3579°. (6.6)
Tyr =0.129q +1.378q° +0.435¢° —0.999q * —0.109q°. (6.7)

Note that: all Poles of transfer functions (6.5), (6.6) and (6.7) are at origin, due to the
ripple free deadbeat property. Where all of them are polynomials with order equal 5,
meaning that the system will settle down after 5 sampling times as shown in Fig. (6.2)
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(a) Error Signal

20

-20 ! ! ! ! ! ! ! ! !
0 1 2 3 4 5 6 7 8 9 10

(b) Control Signal

(c) Response
Figure (6.2): Time response of minimum order solutions

(a) Errorsignal (b) Control Signal (c) Response

Fig. (6.2) shows error, control, and output signals where all of them are polynomial with
order equal 5 and since there exist time delay equal 2 sampling times, they have settled
after 7 sampling times with overshoot = 61.53 %, settling time = 0.7 sec, |U| =

16.6125, |||, = 2.2468, and |[E|, =3.6425

o Decreasing control signal by vector which was produced by Paz using MATLAB built-
in function ‘qp’ [11]. We obtain:

V1=[ 0.3082 0.7534 1.0847]

Computing the transfer functions from output, control, and error signals versus
reference signal using equations (5.3),(5,7), and (5.9) or using RFsys.m in
Appendix B, we obtain:

Ter=1-0.035g-0.4249%-0.683¢°-0.379q* +0.062q° +0.45q° +0.332q" +0.03¢° .-~ (6.8)
Tue=0.405-1.425q+1.645¢°-0.652q° +0.155q" +0.241q1.225¢° +1.233q"-0.3760°.-(6.9)
Tyr=0.035q+0.424q>+0.683q°+0.379q*-0.062¢°-0.45q°-0.332q" -0.03¢® .---------- (6.10)

Note that: all Poles of transfer functions (6.8), (6.9) and (6.10) are at origin, due to
the ripple free deadbeat property. Where all of them are polynomials, meaning
that the system will settle down after 8 sampling times as shown in Fig. (6.3)
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(a) Error Signal

5 ! ! ! ! ! ! \ \ \
0 1 2 3 4 5 6 7 8 9 10

(b) Control Signal

(c) Response

Figure (6.3): Time response of vector, which was produced by Paz.

(a) Errorsignal (b) Control Signal (c) Response

Fig. (6.3) shows error, control, and output signals where all of them are polynomial with
order equal 8 and since there exist time delay equal 2 sampling times, they have settled
after 10 sampling times with overshoot = 40.05%, settling time = 1 sec, ||U| = 2.0443,

E]. = 2.4491, and [E], =4.0466.

e Decreasing control signal by vector which was produced by first approach using
equations (5.18), (5.19), and (5.20). We obtain:

V1=[ 0.3097 0.7339 1.0674].
Computing the transfer functions from output, control, and error signals versus

reference signal using equations (5.3),(5,7), and (5.9) or using RFsys.m in
Appendix B, we obtain:

Ter=1-0.037¢-0.44q>2-0.685¢°-0.345q" +0.065q° +0.431q" 0.331q" +0.03q® .~------------ (6.11)
Tur=0.423-1.512q+1.796q2-0.71q° +0.48° -1.366° +1.268q" -0.378(® .~-------------=-- (6.12)
Tyr=0.037¢+0.44q°+0.685q°+0.345q*-0.0650°-0.431q°-0.331q" -0.03¢® ---------------- (6.13)

Note that: all Poles of transfer functions (6.11), (6.12) and (6.13) are at origin, due
to the ripple free deadbeat property. Where all of them are polynomials,
meaning that the system will settle down after f sampling times as shown in Fig.
(6.4)

63

www.manaraa.com



- 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 1
(a) Error

- ! ! ! ! ! ! | | |
0 1 2 3 4 5 6 7 8 9 1

(b) Control
5 \ \ \ \ \ \ \ \ \
’ W
- 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 1

Figure (6.4): Time response of vector, which was produced by first approach.

(a) Errorsignal (b) Control Signal (c) Response

Fig. (6.4) shows error, control, and output signals where all of them are
polynomial with order equal 8 and since there exist time delay equal 2 sampling times,
they have settled after 10 sampling times with overshoot = 38.90%, settling time =1
sec, |U], =2.1861, |E|| =2.4448, and ||E||2 =4.0094.

e Decreasing control signal by using second approach using equations (5.25) to
(5.35): We obtain:

bestV1=[0.3082 0.6752 1.0847].

Computing the transfer functions from output, control, and error signals versus
reference signal using equations (5.3),(5,7), and (5.9) or using RFsys.m in
Appendix B, we obtain:

Ter=1-0.035q-0.43°-0.747¢%-0.314q* +0.135q° +0.385q° +0.324q +0.03° ----------- (6.14)
Tur=0.405-1.347q+1.166¢%+0.575¢°-1.532q* +1.552q°-1.772q° +1.329q -0.376°.-(6.15)
Tyr=0.035¢+0.43¢°+0.747¢°+0.314q"-0.135q°-0.3850° -0.324q -0.03-------mr--- (6.16)

Note that: all Poles of transfer functions (6.14), (6.15) and (6.16) are at origin, due
to the ripple free deadbeat property. Where all of them are polynomials,
meaning that the system will settle down after f sampling times as shown in Fig.
(6.5)
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(a) Error signal

5 ! | | | ! L ! ! |
0 1 2 3 4 5 6 7 8 9 10

(b) Control Signal

(c) Response
Figure (6.5): Time response of vector, which was produced by second approach.

(a) Errorsignal (b) Control Signal (c) Response

Fig. (6.5) shows error, control, and output signals where all of them are
polynomial with order equal 8 and since there exist time delay equal 2 sampling times,
they have settled after 10 sampling times with overshoot = 35.79%, settling time = 1

sec, |U|, =1.8764, |E|, =2.4491, and |[E|, =4.0026.

Results of step responses to the system using Paz vector, First approach, and second
approach are summarized in Table (6.1)

Table(6.1): Comparison between Paz vector, first approach, second approach

Vector Norm(u,inf) | Norm(E,inf) | Norm(E,2) | Overshoot | Settling time
Paz vector 2.0443 2.4491 4.0466 40.05% 1 sec
First app. 2.1861 2.4448 4.0094 38.90% 1 sec
Second app. | 1.8764 2.4491 4.0026 35.79% 1 sec

For the same settling time, The controller design based on Second approach
have minimum infinity norm of control signal, minimum 2-norm, and minimum
overshoot.

Note that: Due to time delay which equal two sampling time, all systems have settled
down after 7 sec.
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6.2. Magnetic ball levitation CE152 (nonlinear system)

In this section, second order approximation of magnetic ball levitation CE152 will be
computed after tacking two parameters —rising time and overshoot. After that,
parameters of feedback linearization and second order approximation will be modified
to make the coefficient of second order approximation simple and just integer numbers.

following the procedures covered in Chapter 4, Linearization for the magnetic
ball levitation is obtained using feedback linearization as shown in Fig. (6.6)

FeedBack Linearization Magnetic Ball Levitation CE152

Gain3

Integrator

6.8823 e-006 / (u - 0.0083 }"2

i M
Zero-Order Power amplifier otion

Hold2 and coil
+

n 0.2967
Stepl - D/A
1.8694 e-005 s+1

DA
K1 Add1 Converter

-0.0084 *9.8100
Gravity
force
Sum3 Ball damping
18.8097 iy
1

K2 -

variable gap

L 1
B s

velocity

AD
converter
and

Position
sensor

position

Scope 3

z

Unit Delay

Figure (6.6): Model of maglev CE152 with FBL.

Finding the step response of magnetic Ball levitation with feedback linearization,

0.25 : :

Step Response !f

015 Reference signal ,

0.1

0.05

iy
-0.05

0.1

0.2

-0.25
0 0.5 1 15 2 25 3 35 4

Time (sec)

Figure (6.7): Step response of CE152 with FBL.

Overshoot = 1.65%, rising time = 0.07 sec, settling time = 0.1 sec, undershoot =10%

Fig. (6.7) will be zoomed in to find the exact rising time and overshoot as shown in Fig.
(6.8)
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Figure (6.8): Zoom on to find overshoot and rising time

(a) overshoot (b) Rising time

Obtaining the second order prototype based on the given specifications as
covered in chapter two will yield:

P(s)=— 1583.187 617)
s’ +63.1933s +1583.187

e Step response of linearized magnetic ball levitation and its approximated model
to ensure that they are approximately the same

6.8823 e-006 / (u - 0.0083 )2

Motion

Power amplifier

1 and coil
: 1 variable gap
s
A 0.2967
Integrator 1.8694 e-005 s+1

position AD conwerter

and

Gravity Position sensor
force
-
Ball damping

-0.0084 *9.8100

Sum3
18.8097 )
Step1

.

z
Unit Delay

Scope 3

1583 .187

s2+63.1933 s+1583 .187

Second Order Approximation

Figure (6.9): CE152 with FBL and its second order approximation.
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Second Order App.

|
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0.195
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0.185 =

0.18

21 2.15 22 2.25

23

2.4

245

Figure (6.10): Step responses of CE152 with FBL and approximated model.

Fig. (6.10) shows that: the step response of approximated model and linearized model

are the same.

The previous system has a very large overshoot, and deadbeat controller will
contribute overshoot; moreover, it is not easy to deadbeat nonlinear system with very
large overshoot; thus, another feedback linearization will be found as shown in Fig.

(6.11)

Obtaining the second order prototype based on the given specifications as

covered in chapter two will yield:

1000
P(s)=3
5°+80s+1000

(6.18)

Gain3 Motion

Power amplifier
force

and coil

Zero -Order
Hold 2

0.2967

Integrator 1.8694 e-005 s+1

-0.0084 *9.8100

Gravity
force

6.8823 -006 / (u - 0.0083 )"2

variable gap

Ball damping

position

AD conwerter
and
Position sensor

Sum3
)
Step1
i
K2 =
z

Unit Delay

1000

2+805+1000

Second Order Approximation

Scope 3

Figure (6.11): CE152 with third FBL and its second order approximation.

68

www.manaraa.com
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0.16

0.08

0.06 '_l
0.04

0.02 'J

Figure (6.12): Step responses of CE152 with third FBL and approximated model.

Fig. (6.12) shows that the step response of linearized model and approximated model

are the same and they do not have overshoot; thus, the plant P(s):f& will be
s“+80s+1000

used to find deadbeat controller for linearized model of magnetic ball levitation.

If the first approximated model shown in Fig. (6.6) is used to find the deadbeat
controller for magnetic ball levitation, the response will have a very large overshoot in
real-time application; moreover, it is not easy to control the nonlinear system with very
large overshoot.

6.3. Deadbeat controller for magnetic ball levitation with feedback
linearization

In order to show the multi-rate system we select a sampling time for feedback
linearization 1 ms, and another sampling time for deadbeat controller 10 ms.

1000
s?+80s+1000
wish to track the sinusoid r (t) =3* sin (2t).

Computing the minimum order solutions to the Diophantine equations systematically,
following the procedure mentioned in section (5.5) we obtain

Let us consider the system , Which has obtained in the previous section. We

N1=35.64 - 21 q (6.19)

Q1=1+0.622 ¢, (6.20)
N2=21.46 - 8.367 *q, (6.21)
Dc=1 + 0.5515*q. (6.22)

N1, N2, and D, will be applied to the magnetic ball levitation with feedback linearization
as shown in Fig. (6.13)
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Figure (6.14): Sinusoidal response of CE152 with FBL and with deadbeat
controller.

Fig.(6.15) shows the response of magnetic ball levitation with feedback linearization
and with deadbeat controller, you can see that the response (dotted line) followed the
reference signal (soled line) after finite time with steady state error equal zero.
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Figure (6.15): Sinusoidal response of CE152 with FBL.

Fig.(6.16) shows the response of magnetic ball levitation with feedback linearization
without deadbeat controller, you can see that the response (dotted line followed the
reference signal (soled line) with apparent steady state error.

07 P — FG
0.65 : “ WithFB [
o // TN | |
0.55 / \
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045 _—
04| \\
035}
03

0 05 1 15 2 25 3

Figure (6.16): Sinusoidal response of CE152 with FBL and with/without deadbeat
controller
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Fig.(6.17) shows the response of magnetic ball levitation with feedback linearization
without deadbeat controller and response of magnetic ball levitation with feedback
linearization with deadbeat controller.

You can see that,

o the dotted line (Response of system with deadbeat Controller) can follow the solid line
(Reference signal) better than the dashed line (Response of system without deadbeat
Controller)

e Settling time when using deadbeat controller is smaller than settling time without using
deadbeat controller.

6.4. Deadbeat controller for real-time maglev CE152

Second order approximation of real-time magnetic ball levitation CE 152 with feedback
linearization shown in Fig. (6.18) will be found based on specifications of step response
of real-time linearized model as covered in chapter two will yield:

1237.3

s?+555+1237.3
Computing the minimum order solutions to the Diophantine equations systematically,
following the procedure mentioned in section (5.5) we obtain

P(s)= (6.23)

N1=26.05 - 15.44 q. (6.24)
Q1=1 + 0.6605 q. (6.25)
N2=17.13-8.117 q. (6.26)
Dc=1 + 0.602 q. (6.27)
After modifications the previous parameters will be

N1=26.1502 -15.4985q. (6.28)
N2=5(3.4460 -1.6353¢)=17.23-8.1765q. (6.29)
Dc=1+0.60266( (6.30)

Setpoint Offset 1 integrator 2

0.0625 z+0.0625

Analog Output

<M >
oooo zl Analog
DO Output
From Oto 5V
Reference Signal
FB_TF "
position -x
16.0650 z2-30.7950 z+14.7550 P Analog
22.7 Input

Feedback Gain 3

e

present position

Figure (6.17): FBL of real-time maglev CE152.
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03 ! ! ! ! ! ! ! ! !

Figure (6.18): Response of real-time CE152 with FBL

Fig. (6.19) shows that: the response of real-time magnetic ball levitation without
deadbeat controller (dashed line) can follow reference signal (solid line) with large
steady state error

Applying N1, N, and D, to the real-time magnetic ball levitation CE152 as shown in
Fig. (6.20)

Setpoint Offset 1 N1 Dc integrator 2

b

Analog Output

ooog
[°Xe}

From0to2V

N From 0to 5V
Reference Signal
position -sensor

Feedback Gain3

' #
N2 present position

Figure (6.19): Block diagram of deadbeat controller and FBL
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Figure (6.21): Sinusoidal response of deadbeat controller with FBL for RT CE152

Fig. (6.21) and (6.22) shows the response of real-time magnetic ball levitation CE152
with feedback linearization and with deadbeat controller, you can see that the response
(dashed line) followed the reference signal (soled line) after finite time with steady state
error equal zero.

6.5. VHDL code of deadbeat controller for real-time magnetic ball
levitation CE152

In this section, VHDL code of deadbeat controller for real-time magnetic ball
levitation will be simulated and compared with original blocks which has already
deadbeat the system, and the approximated model which take into consideration the
quantization error, number of input bits, and number of output bits.

DSP design tool from Xilinx will be used since this tool enables the use of the
MathWorks SIMULINK environment for FPGA design.

Using DSP design tool to generate VHDL code is not a good technique for multi
blocks model; since, large VHDL code will be generated. Therefore, VHDL code will
be written for deadbeat controller [28], compiled using ISE Design Suite 10.1, and
simulated using Xilinx Black Box to upload the VHDL of deadbeat controller for
magnetic ball levitation with feedback linearization.

6.6. The Xilinx DSP Block Set

Over 90 DSP building blocks are provided in the Xilinx DSP blockset for
SIMULINK. These blocks include the common DSP building blocks such as adders,
multipliers and registers. In addition, the DSP tool included a set of complex DSP
building blocks such as forward error correction blocks, FFTs, filters and memories
[29]. Four blocks will be used in my project; these blocks will be described briefly:
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o Gateway in and Gateway out
“Gateway In” and “Gateway Out” define the boundary of the FPGA from the
SIMULINK simulation model. The Gateway In block converts the floating-point
input to fixed-point. The Gateway out converts the FPGA outputs back to double
precision block. Double-click on the block to bring up the properties editor.

Properties for gateway in:
Signed 2’s compliment,
Sample period = .001,
Number of bits = 8,

Binary point =0

e Black box:
Black box allows VHDL code to be imported into SIMULINK and co-simulated
with either ModelSim or Xilinx ISE Simulator. VHDL code of deadbeat
controller will be imported to this block and simulated.
Properties of Black Box:
Simulation mode: ISE simulator

e System generator
Once the design is completed, hardware implementation files can be generated
using the Generate button available on the System Generator properties editor
and this block can be used to simulate the already written hardware
implementation file.

Properties of system generator:

Compilation: HDL netlist

Part: SPARTAN3A AND SPARTAN3AN XC3s700an -4 fg484
Hardware description language: HDL

FPGA clock period (ns): 20

Clock pin location: E12

SIMULINK system Period(sec): .001

6.7. Obstacles and solutions

Many obstacles have been encountered and solved during writing and simulating VHDL
code. Some of these obstacles will be discussed here:

Any names for input and output ports can be used except the reserved names for
VHDL commands. Thus, I chose ‘Clock’,”CLK50’, and many other names for FPGA
clock. It’s ok when you synthesize this code using ISE Design Suite, and when you
simulate the VHDL code using ModelSim or Xilinx ISE Simulator, but it’s not ok when
you use DSP design tool on SIMULINK environment, since, you can’t build a square
wave for clock with Thign or Tiow Smaller than sampling time. After studying some
VHDL code that simulated using DSP design tool on SIMULINK environment, | found
that you should define two ports ‘clk’ for clock and ‘ce’ for counter enable, then these
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ports will be hidden and the DSP design tool will take the clock period from FPGA
clock period property in Properties of system generator.

Any computational process will be registered in signal; Thus, number of bits for
this signal should be determined depending on number of bits for coefficients, number
of multiplication and summation terms, 1 bit for negative and positive sign, and one
margin bit as mentioned in section (5.9). Just summation of equally number of bits in
VHDL code can be done “z(n bits) = x(n bits) + y(n bits)”, the result number of bits for
multiplying terms equal summation of number of bits for each term * x(n; bits)*y(n;
bits)*z(n3 bits)=w((n1+ N1+ ny) bits).

6.8. Designing Steps:

Simulating VHDL code for constant input signal and comparing the results
appeared on Display screens with original deadbeat controller will be done, then manual
switch will be used to convert from constant input to sinusoid form with offset then
simulating and comparing the results on different scopes will be done.

e VHDL code for deadbeat controller will be written using equations (5.77), (5.79),(5.81),
and (5.83).

o VHDL code will be synthesized using ISE Design Suite .

e DSP design tool from Xilinx will be used to build the required block as shown in Fig.
(6.26) to simulate VHDL code and compare it with original SIMULINK model for
deadbeat controller.

o If the simulated results are not ok, the first two steps will be reused.

6.9. ADC

Analog to digital converter as shown in Fig. (6.23) will be used to convert unlimited
number of levels from input signal to limited number of levels. Eight bits will be used;
one of them for negative and positive sign and seven bits for output level.

Peak value of input signal =5 Volts; thus, saturation will be used to eliminate any input
larger than 5 volts.

AJD output gain will be used to convert the peak of input signal from 5 to 127

Rounding function will be used to convert the infinity number of levels to limited
number of levels by removing the floating point.

1 > round

Inl - - Outl
Saturation Rounding

From Oto 5V A/D output Gain Function

Figure (6.22): Block diagram of analog to digital converter
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6.10. Approximated model of deadbeat controller

Comparing original deadbeat controller shown in Fig. (6.24) which uses
unlimited number of levels for input signal and real number for coefficients with VHDL
code that uses limited number of levels for input signal and just natural humber for
coefficients is not efficient. Thus, an approximated model for deadbeat controller will
be made as shown in Fig. (6.25) using analog to digital converter shown in Fig. (6.23)
and deadbeat controller shown in Fig. (5.11)

> 1)
XDC
26.1502 z-15.4985 z
misesn )y
G z z+0.60266 v
Discrete Discrete
Transfer Fcn Transfer Fcn 2

sen_X
3.4460 z-1.6353 u_

z

Discrete
Transfer Fcn 1

Figure (6.23): Block diagram of original deadbeat controller
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A/D1

sen_X

outtin1|€— 2 )

Gain 3

1

Y4
Unit Delay 1

Gain 4

N2

Figure (6.24): Block diagram of approximated model deadbeat controller

6.11. Simulation of VHDL code

Fig. (6.26) shows black box that imported VHDL code for deadbeat controller called
VHDL-Code Dead-Beat Controller”, subsystem contains deadbeat controller shown in
Fig. (6.24) which called “DB”, and subsystem contains approximated model of
deadbeat controller shown in Fig. (6.25)
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Figure (6.25): Block diagram of subsystem Approx. DB, DB, Black box for VHDL

Fig. (6.26) shows that the output of VHDL code almost equal the output of
approximated model; thus, the VHDL code programmed successfully.
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Figure (6.26): Time response of VHDL code versus original controller

Fig. (6.27) shows the response of VHDL code for deadbeat controller
(dotted line) and step response of original deadbeat controller (solid line).
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Figure (6.27): Time response original controller versus its approximated model

Fig. (6.28) shows the response of an approximated model of deadbeat controller
(dotted line) and step response of original deadbeat controller (solid line).

2" e [ e e T e e e e N
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05 | | | | | | | | ;
3 . . .

Figure (6.28): Time response of VHDL code versus approximated model.

Fig. (6.29) shows the response of an approximated model of deadbeat controller
(dotted line) and step response of VHDL code for deadbeat controller (solid line).

Note:
1) The response of VHDL code exactly equals the response of approximated model,

which means: deadbeat Controller is programmed successfully.

2) The response of VHDL and approximated model are not exactly equal the response
of original model of deadbeat Controller, since the function of deadbeat controller is
to follow the signal as fast as possible which make an overshoot that directly
proportional to the difference between present and wanted values which means it’s
directly proportional to the quantization error, So to decrease this chattering we
need to use extra number of bits for input signal.
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CHAPTER 7 CONCLUSION

A new design methodology for ripple-free deadbeat control of nonlinear systems
in discrete-time was proposed. This new control methodology combined two ripple-free
deadbeat controllers to control nonlinear systems. The new control methodology
guaranteed the robustness and handled multi-rate systems. The results shown that, the
response of nonlinear system tracked the reference signal with zero steady state after
very small rising time. This thesis minimized the settling time by using second order
linear model to approximate the nonlinear system.

The settling time depends on the length of three polynomials N1, N, and D.. The

length of these polynomials depends on the degree of numerator of plant, denominator
of plant, and denominator of reference signal; thus, when the order of plant for linear
systems and order of linearized plant for nonlinear systems greater than two, the second
order approximation that was applied depended on the two dominant poles.
This thesis proposed a hybrid two degree of freedom controller for the nonlinear
optimization problem addressing performance and robustness specifications, utilizing
the parameters of Diophantine equation to build a robust multi-rate ripple-free deadbeat
control. A combination between the concept of multi-rate and robust single was
proposed.

The proposed controller was applied using SIMULINK model of magnetic ball
levitation CE 152 as a case study for nonlinear systems, simulation results shown that
the controller performed fine with simulated plant but gave harmonic signal.

The proposed controller was also applied on real-time magnetic ball levitation
CE 152 using real-time toolbox in MATLAB environment, the controller worked fine
with real-time plant but still gave harmonic signal.

Multi-rate ripple-free deadbeat control problem was evaluated by two steps: full
state feedback which depended on (Time-domain approach) and Diophantine equations
which depended on (Polynomial approach). State and output feedbacks were used to
linearize and stabilize the nonlinear system and to make the response of the nonlinear
system closely track the reference signal. The Diophantine equations which depend on
internal model principle were utilized and applied to the linearized and stabilized
nonlinear system to make the response of the system exactly equal the reference signal
and provide some robustness.

VHDL code for deadbeat control for magnetic ball levitation with feedback
linearization was written and simulated using Xilinx toolbox and compared with the
approximated model of SIMULINK original blocks.
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Simulation and real-time results showed that the output signal exactly tracked
the input sinusoidal signal in short settling time. The time domain specification for the
output signal, control signal, and error signal were computed and satisfied the
requirement and constraints. A time delay was also presented with simulation and was
solved by using deadbeat controller based on solving Diophantine equation parameters.

Future research can used to deadbeat the nonlinear system using another
linearization technique. Moreover, the effect of the noise and output disturbances on the
system can be studied; the effect of changing working points, changing the sampling
time, and changing the frequency of input signal can be also studied.

81

www.manaraa.com



REFERENCES

[1] Hyo-Sung Ahn, Yang Quan Chen, and Kevin L. Moore (2007), “Iterative Learning
Control: Brief Survey and Categorization,” IEEE Systems, Man, and Cybernetics Society,
VOL. 37, NO. 6.

[2] Finn Orfano, Why are Control Systems Used?, Edited & published by Rebecca Scudder
on May 25, 2010, accessed on May 18, 2011, online:

http://www.brighthub.com/engineering/electrical/articles/72133.aspx

[3] Wikipedia, the free encyclopedia (modified on 16 April 2011 at 15:24), Digital control,
accessed on May 18, 2011, online: http://en.wikipedia.org/wiki/Digital_control.

[4] Dragan Nesi¢, (1996) “Dead-Beat Control for Polynomial Systems,” PhD thesis,

Australian National University.

[5] Dictionary and Encyclopedia Directory, Control system — Definition, accessed on May
18, 2011, online: http://www.wordig.com/definition/Control_system

[6] B.C. Kou and F. Golnaraghi (2003), Automation Control Systems, Wiley, Hoboken.

[7] Tou J.T. (1959), Digital and Sampled-Data Control Systems. McGraw-Hill, New York,
NY.

[8] H. Elaydi and R. A. Paz (1998), “Optimal Ripple-Free Deadbeat Controllers for Systems
with Time Delays,” Proceedings of the American Control Conference, Philadelphia, USA.

[9] L. Jetto and S. Longhi (2002),"Parameterized solution of the deadbeat ripple-free control

problem for multirate esampled-data systems,” Proceedings of the 38th IEEE Conference

on Decision & Control, Phoenix, Arizona.

82

www.manaraa.com



[10] H. Tto, (2001), “Improving performance of deadbeat servomechanism by means of
multirate input control,” Thesis, Kyushu Institute of Technology, Japan, Accessed on
Nov. 1, 2008, online: http://search2.libi.kyutech.ac.jp/TR/pdf/cssel4.pdf

[11] R. A. Paz, (2006), “Ripple-free tracking with robustness,” International Journal of
control, Vol. 79, No. 6.

[12] M. E. Salgado and D. A. Oyarzun (2007), “Two objective optimal multivariable
ripplefree deadbeat control,” University Tecnica Federico Santa MariaValparaiso, Chile,

Accessed on April 1, 2009, online: http://www.hamilton.ie/d.o/docs/saloya07ijc.pdf.

[13] Fadi M. Albatsh (2009), Multirate Ripple-Free Deadbeat Control, Master thesis, Islamic
University of Gaza.

[14] Wikipedia, the free encyclopedia (modified on 16 May 2011 at 06:12), Linear systems,
accessed on May 18, 2011, online: http://en.wikipedia.org/wiki/Linear_system

[15] Wikibooks, open books for an open world, Control Systems/State-Space Equations,
accessed on May 19, 2011, online: http://en.wikibooks.org/wiki/Control_Systems/State-

Space_Equations

[16] Wikipedia, the free encyclopedia (modified on 13 May 2011 at 11:31), State space
(controls), accessed on May 19, 2011, online:

http://en.wikipedia.org/wiki/State_space_(controls)

[17] Wikipedia, the free encyclopedia(modified on 29 April 2011 at 21:11.), Nonlinear system,

accessed on May 19, 2011, online: http://en.wikipedia.org/wiki/Nonlinear_system

[18] J. K. Hedrick and A. Girard (2005), Control of Nonlinear Dynamic Systems: Theory and
Applications, Chapter 8, and accessed on May 19, 2011, online:
http://www.me.berkeley.edu/ME237/8_feedback_lin.pdf

[19] H. Khalil, Nonlinear Systems, 3rd Edition , Prentice-Hall, Englewood Cliffs, NJ.

[20] Wikipedia, the free encyclopedia (modified on 13 May 2011 at 07:51), Scientific
Techniques of Levitation, accessed on May 19, 2011, online:

http://en-wikipedia-org/wiki/Levitation.

83

www.manaraa.com



[21] Marcio S. de Queiroz and Darren M. Dawson (1996), " Nonlinear Control of Active
Magnetic Bearings: A Backstepping Approach," IEEE transactions on control system
technology, Vol. 4, NO 5.

[22] HUMUSOFT, (1996-2008), CE 152 Magnetic Levitation Model, Technical Manual,
Czech Republic.

[23] F. Gazdos , P. Dostal, and R. Pelikan (2009), “Polynomial approach to control system
design for a magnetic levitation system,” Cybernetic Letters: Informatics, Cybernetics,
and Robotics, PP. 1-19,

[24] Magnetic Levitation Model (CE 152), Advanced-models-laboratory, laboratories VSB -
Technical University of Ostrava, accessed on May 19, 2011, online:
http://www.352.vsb.cz/english/laboratories/advanced-models-
laboratory/levitation/levitation.htm

[25] Khalid Abdelhafiz Ali, Mohammed Abdelati, Mohammed Hussein (Jan.2010),
Modelling, Identification and Control of A "Magnetic Levitation CE152", Al-Agsa
University Journal (Natural Sciences Series), Vol.14, No.1, PP 42-68.

[26] Wikipedia (modified on 28 April 2011 at 16:29.), the free encyclopedia, Feedback
linearization, accessed on May 19, 2011, online:

http://en.wikipedia.org/wiki/Feedback_linearization

[27] J F Coales (1957), “An introduction to the study of non-linear control systems,” Journal

of Scientific Instruments VVol. 34 No. 2.

[28] Pong P. Chu (2008), FPGA Prototyping By VHDL Examples, Wiley-Interscience XILINX
SPARTAN-3 version,

[29] Xilinx (December 14, 2010), System Generator for DSP, UG639 (v 12.4) access on May
19, 2011, online;
http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_4/sysgen_gs.pdf

84

www.manaraa.com



Appendix A

VHDL code for deadbeat controller

library IEEE;

use IEEE.STD LOGIC 1164.ALL;

use IEEE.STD LOGIC ARITH.ALL;

use IEEE.STD LOGIC SIGNED.ALL; -- change unsigned to signed
——————————————————————— Define input/output ports—----——-————----—————-——-
-- The name of port for FPGA's internal clock should be 'clk' to be
used in simulation

-- You should define ce 'clock enable'.

entity DeadBeatXilinx is

Port (clk : in STD LOGIC;
ce : in STD LOGIC;
FG : in  STD LOGIC VECTOR (7 downto 0);
sen X : in  STD LOGIC VECTOR (7 downto 0);
XDCsign : out STD LOGIC;
XDC : out STD LOGIC VECTOR (7 downto 0);
Y : out STD LOGIC VECTOR (7 downto 0)

) ;
end DeadBeatXilinx;
architecture Behavioral of DeadBeatXilinx is

signal sen X buffer : STD LOGIC VECTOR (7 downto 0):=(others=>'0");
signal sen X1 buffer : STD LOGIC VECTOR (7 downto 0):=(others=>'0");
signal FG buffer : STD LOGIC VECTOR (7 downto 0):=(others=>'0");
signal FGl buffer : STD LOGIC VECTOR (7 downto 0):=(others=>'0");
signal Y buffer : STD LOGIC VECTOR (7 downto 0):=(others=>'0");
signal counter : STD LOGIC VECTOR (4 downto 0):=(others=>'0");
signal counterCLK50 : STD LOGIC VECTOR (17 downto 0):=(others=>'0");
signal XDC buffer : STD LOGIC VECTOR (20 downto 0):=(others=>'0");
signal XDC buffer2 : STD LOGIC VECTOR (8 downto 0):=(others=>'0");
signal XDC buffer3 : STD LOGIC VECTOR (20 downto 0):=(others=>'0");
signal XDC buffer sign : STD LOGIC VECTOR (8 downto 0):=(others=>'0");
signal YDC buffer : STD LOGIC VECTOR (20 downto 0):=(others=>'0");
signal YDC1l buffer : STD LOGIC VECTOR (7 downto 0):=(others=>'0");

—————————————————————————— Define constants---------------—--—-—"——-———————
-- the binary number will be -ve when it's decimal larger than 5
-— 5*%127*%128/5=16256="011111110000000000000"

process (clk,ce,FG,sen X)
—————————————————————————— Define constants-----—--—-—----—-----———"————-——-

constant a3347 : STD LOGIC VECTOR (12 downto 0):="0110100010011";
constant al9%984 : STD LOGIC VECTOR (12 downto 0):="0011111000000";
constant a44l : STD LOGIC VECTOR (12 downto 0):="0000110111001";
constant a209 : STD LOGIC VECTOR (12 downto 0):="0000011010001";
constant al28 : STD LOGIC VECTOR (12 downto 0):="0000010000000",;
constant a77  : STD LOGIC VECTOR (12 downto 0):="0000001001101";
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begin
if (ce='l' and rising edge(clk)) then
-— CLK50 = 50 MHz=> to find 1lms sampling time we need
-- 1m*50M=50,000 samples, 50000="001100001101010000"
-—- comment the following three lines for simulation and don't forget
to comment last 'end if'
-— counterCLK50<=counterCLK50+1;
-- if counterCLK50 = "001100001101010000"™ then -- 50,000 cloks => 1

-— counterCLK50<= (others=>'0");

sen X buffer<=sen X;

FG buffer<=FrG;

counter<=counter+1;

if counter="01010" then
counter<=(others=>'0");
XDC buffer<=a3347*FG buffer-al984*FGl buffer-
ad44l*sen X buffer+az209*sen X1 buffer;
XDC buffer3<=XDC buffer;
sen X1 buffer<=sen X buffer;
FGl1 buffer<=FG buffer;

end if;

if XDC buffer(l4)='1l"' then
XDC buffer2 (7 downto 0)<=XDC buffer (14 downto 7);
XDC buffer sign<="100000000"-XDC buffer2;
XDC<=XDC buffer sign(7 downto 0);
XDCsign<="1";
Y buffer<=(others=>'0");
YDC1 buffer<=(others=>'0");

else
XDC<=XDC buffer (14 downto 7);
XDCsign<='0";
YDC buffer<=XDC buffer3-a77*YDCl buffer;
-- Apply Saturation ( 2*127/5=50.8 ~= 51 = "00110011"™)
if XDC buffer3(14)='1l"' then
Y buffer<=(others=>'0");
YDC1 buffer<=(others=>'0");
elsif YDC buffer (14 downto 7)>"00110011" then
Y buffer<="00110011";
YDC1 buffer<="00110011";
else
Y buffer<=YDC buffer (14 downto 7);
YDC1 buffer<=YDC buffer (14 downto 7);
end 1if;
if Y buffer(7)='1" then
Y<=(others=>'0");
else
Y<=Y buffer;
end if;
end if;
end if;
-—end if;

end process;
end Behavioral;

86

www.manharaa.com




Appendix B

MATLAB Code « Main code »

clear all; close all; clc

T=.0833; % Sampling time

td=.13; % Time delay

Amplitude=3; % Amplitude of Reference Signal
Omega=2; % radian freg. of Reference Signal
PhaseRad=pi/2; % phase shift in radian

Tfinal=10; % final simulation time

Tfinal=round (Tfinal/T)*T

Mc=tf (100, [1 O 4]);

L=3;

Gc tf(200,[1 -2 2], 'ioDelay',td);

oo

Model Filter
Length of wvector V1

o©

P g=SQ (Mc*Gc, T) ; % plant
[nump denpl=tfdata(P_q,'v');
denp=removeZeros (denp) ;

OrderP=length (denp) -

% Reference signal
t=sym('t'); Rt=Amplitude*sin (Omega*t); Rc=laplace(Rt); Rc=sym2s(Rc);
R g=SQ(Rc,T); % Reference signal in g-domain

% compute minimum order of N1Ql and N2Dc then find N1, Q1, N2, and Dc
[N1Q1l Order N2Dc_Order]=Mini Order (P _gq,R q);

[NI g Q1 g N2 g Dc_g]=N1QIN2DC(R gq,P g,N1Ql Order,N2Dc Order);

N1 g NC=N1 g;

N2 g NC=N2 g;

01_g_NC=01_g;

Dc_g NC=Dc g;

% check if the Diophantine equations are OK or not
[DCl DC2]=DioCheck (N1 ¢gq,N2 gq,Q1 g,Dc_gq,R q,P q);

3 construct the system
[sys Ter Tur Tyr]=RFsys (Nl q,N2 g,Dc qgq,P g);

% Generate The Time Domain input signal

[u,t] =Generate Signal('sin',Amplitude,Omega,PhaseRad,Tfinal,T);
g —m e Minimzing Control signal
[x Nlnew]=performance2 (Nl gq,P gq,R gq,Gc,L);
N1 g=tf(Nlnew,1,T,'variable','q");

[sys2 Ter2 Tur2 Tyr2]=RFsys (Nl gq,N2 gq,Dc_g,P _q);
C=lsim(Tyr2,u,t);
CC=norm(C, inf) ;
C=lsim(Tur2,u,t);
Normx=norm (C, inf) ;
C=lsim(Ter2,u,t);
Errorx=norm(C (OrderP-1:end), inf) ;

g — e Minimizing control signal by my FIRST method
[Vl N1 new]=findVvl (N1 g NC,R qgq,L);
[sys3 Ter3 Tur3 Tyr3]=RFsys (Nl new,N2 q,Dc _g,P _q);
——— Minimizing control signal by my Combined method
[bestVl N1 new]=bestV1l (N1l g NC,N2 g,Dc q,P q,R gq,x,V1l,NormVl,Normx,u, t)
[sys4 Ter4 Turd Tyr4]=RFs§sTN1_neW,N2_E,Dc:q,P:q);

any functions, all of them is placed in Thesis CD
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Best vector to minimize control signal

function [VVV
N1 new]=bestV1l (Nl g NC,N2 g,Dc gq,P gq,R qg,x,V]l,NormVl, Normx,u, t)
% This function has been built by Mohammed T. A. Elamassie
% This function will find new vector istead of V1 to minimize
the control
% signla, this wvector is compination vector between vector x
which found by
% quadratic approach and V1 which I found by my method
dif=0;
L=length (x) ;
[numN1 denNl T]=tfdata (N1l g NC,'v");
numNl=numNl (end:-1:1);
[numr denr]=tfdata(R g, 'v');
denr=denr (end:-1:1);
N1 sym=polyZsym (numN1l) ;
Dr sym=polyZsym(denr) ;
KK=0;
XX=X;
previous Norm=min (NormV1l,Normx) ;

for i=1:L
x(1)=V1 (1) ;
V1 sym=polyZsym(Xx) ;
N1 new=symZpoly(collect (N1 sym-Dr sym*V1 sym));
N1 new=Nl new(end:-1:1);
N1 new=tf (N1 new,1,T,'variable','q');
[sys3 Ter3 Tur3 Tyr3]=RFsys (Nl new,N2 g,Dc g,P q);
C=lsim(Tur3,u,t);
NormVl=norm (C, inf) ;
if NormVl<previous Norm

KK=KK+1;
VVV=x;
previous Norm=NormV1;
end
X=XX;
end
if KK==
if NormV1<Normx
VVV=V1;
else
VVV=x;
end
end
if KK>0
dif=x-VVV;
end
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if sum(abs (dif))~=0
for 33=1:20
VVV=VVV-dif;
V1 sym=poly2sym(VVV) ;
N1 new=symZpoly(collect (N1 sym-Dr sym*V1 sym));
N1 new=Nl new(end:-1:1);
N1 new=tf (Nl new,1,T, 'variable',6 'q");
[sys3 Ter3 Tur3 Tyr3]=RFsys (Nl new,N2 g,Dc g,P q);
C=lsim(Tur3,u,t);
NormVl=norm(C, inf) ;
if NormVl<previous Norm
previous Norm=NormV1;
else
VVV=VVV+dif;
break;
end
end
end
V1 sym=poly2sym(VVV) ;
N1 new=symZpoly(collect (N1 sym-Dr sym*V1 sym));
N1 new=Nl new(end:-1:1);
Nl:new=tf7Nl_new,l,T,‘variable‘,'q');
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Connecting subsystems together

function [sys Ter Tur Tyr]=RFsys(N1,N2,Dc,P)

% this function has been built by mohammed T. A. Elamassie

% this function will connect the subsystems to construct the following
% system

% e e >+0-->E  0.P #1

%$Defining input and output for each block
Nl.InputName='R'; Nl1.OutputName='RN1';
D.InputName='El'; D.OutputName='U";
P.InputName='U"; P.OutputName='Y";
N2.InputName='Y'; N2.OutputName='¥YN2';

% Defining summation as block,its inputs, and its output

uml = tf([1,-1], "InputName', {'RN1', 'YN2'}, 'OutputName', 'E1");
um2 = tf([1l,-1], "InputName', {'R','Y"'}, 'OutputName', 'E") ;

% Construct the system

sys = connect (N1,N2,P,D,Suml,Sum2, 'R', {'E','U",'Y"});

0 n

[num den T]=tfdata(sys,'v'");
% Transfer function between Error and Reference
nume=round (num{1}*1000) /1000;

dene=round (den{1}*1000) /1000;

Ter=tf (nume, dene, T, 'variable', 'z");

% Transfer function between control signal and reference
numu=round (num{2}*1000) /1000;

denu=round (den{2}*1000) /1000;

Tur=tf (numu, denu, T, 'variable', 'z");

% Transfer function between output and reference
numr=round (num{3}*1000) /1000;

denr=round (den{3}*1000) /1000;

Tyr=tf (numr,denr, T, 'variable',"'z");
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Appendix C

Graphical User Interface (GUI)

Evaluate parameters of Diohantine equation for a given system, minimize infinity
norm of control signal, and plot the signals
B stbampe —_— - = - el

»

file Norm Comparison

Order Of Order of Reference's Reference's
T td Molded Filter Gc N1,01 NZ Dc Amplitude  frequency  Phase shift  simulation time
oo o | wwpem | (wewpamy | (3] [ ] (s (2]
Compute Check the diophantine equations All digphantine equations are Ok
N1 32085 - 2.3622q N2 140317 - 306545q +24.5249¢°2 - 6.9476¢°3
Q1 1 +1.8393q +1.21559°2 +0.10818¢3 Dc 1 +3557g +2.9353¢'2 +0.285350'3

Simulation @ 0K normiu,inf) 54.4741 w1 0

norm{u,infy<= find V1
MassSpringSystem

Reference
w {4

Response
20 1 2

Error Signal | 0 0

blug - ‘

2 4 6 8 10
']
B RF first Bxample N 3 ocali= o
file Norm Comparison -
Order Of Order of Reference’s Reference's
T td Molded Filter Ge N1,01 N2 Dc Amplitude  frequency  Phase shift  simulation time
(0033 | [n] | 00,04y | | deooyi22) | [3] EN =
Compute Check the diophantine equations All diophantine equations are Ok
N1 25488 - 29168 +0.21730%2 +3 26433 - 2,497 g4 N2 14,0317 - 30.65450 +24.52490°2 - 694763
Q1 1 +18625g +1548192 +1 265793 + 200834 + Dec 1 +3557q +293530"2 +0 2693503

12907g% +0. 1143546

Simulation @ OK norm{u,inf) 4.0471 ‘V1 \ 0.56069  1.6605  2.497 |

norm{u,infy<= find V1
MassSpringSystem

3 6
Reference |
2 ]
1 ]
Response | 0
A ]
ErrurSignﬁIl 2 4
red -
3 ]
Control Signal 4 1
-5 L L L L n " " L
0 2 4 6 104y 2 4 6 ] 10

91

www.manharaa.com




MassSpringSystem |

Mass spring system over moving belt as an example of following sinusoid signal

15

Lo
=1

15

92

www.manaraa.com



Appendix D

Used Software and Hard ware

Software programs

1- Windows vista

2- MATLAB R2007b (matrix laboratory) is a numerical computing environment and
fourth-generation programming language. Developed by MathWorks, MATLAB allows
matrix manipulations, plotting of functions and data, implementation of algorithms,
creation of user interfaces, and interfacing with programs written in other languages,
including C, C++, and FORTRAN.

| used this program to simulate my works and to build Graphical User Interface

3- SIMULINK, developed by MathWorks, is a commercial tool for modeling, simulating
and analyzing multi-domain dynamic systems. Its primary interface is a graphical block
diagramming tool and a customizable set of block libraries. It offers tight integration
with the rest of the MATLAB environment and can either drive MATLAB or be
scripted from it. SIMULINK is widely used in control theory and digital signal
processing for multi-domain simulation and design.

| used this tool to simulate my works and to run the Real-time magnetic ball levitation.

4- WebPACK_SFD_10.1 (Xilinx ISE 10.1)

Xilinx ISE is a software tool produced by Xilinx for synthesis and analysis of HDL
designs, which enables the developer to synthesize (“compile™) their designs, perform
timing analysis, examine RTL diagrams, simulate a design's reaction to different
stimuli, and configure the target device with the programmer. The Web Edition is a free
version of Xilinx ISE that can be freely downloaded or delivered by mail. This edition
provides synthesis and programming for a limited number of Xilinx devices.

I used this software computer program to synthesize and analyze The VHDL Code of
Deed-Beat control for Real-Time Magnetic Ball Levitation.

5- Dsptools_SFD.tar (version 10.1) developed by Xilinx, is a tool for modeling, simulating
and analyzing systems used in SIMULINK environment.
| used this software computer program to simulate The VHDL Code of Deed-Beat
control for Real-Time Magnetic Ball Levitation.

Note: Dsptools_SFD.tar (version 10.1) is compatible with MATLAB R2007b
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http://en.wikipedia.org/wiki/Numerical_analysis
http://en.wikipedia.org/wiki/Hardware_description_language

Hardware

1- Personal Computer

2- Magnetic Ball Levitation CE 152.

3-  Multifunction Data Acquisition Card MF624.
4- Power supply.

94

www.manharaa.com






